PredictiveNet: Reduced Complexity Convolutional Neural Networks via Low-cost Zero Prediction

Yingyan Lin, Charbel Sakr, Yongjune Kim and Naresh Shanbhag
University of Illinois at Urbana-Champaign

Motivation

- Convolutional Neural Networks (CNNs):
 - **Record-breaking** performance in many tasks
 - **Huge** implementation cost, e.g. AlexNet - 13kMACs/pixel

Objective

- Make use of DNN structure to ↓ power dominant computational and representational costs

PredictiveNet Principle

- residual computations en net zero activation ?
- low-cost predictor

PredictiveNet Architecture

Simulation Results

- Compare with three baselines
 - Predictor Only (MSB-CNN)
 - Full Computation (FP-CNN)
 - Full Computation with ZS (FP-ZS)

Evaluation

- Classifiers error rate ≈ that of FP-CNN
- ↓ 5 in computational cost over conventional CNN
- ↓ 3 in computational cost over state-of-the-art

Analytical Justification

- **Fails with low probability**
 - When does PredictiveNet fail? Predictor ≤ 0 but Actual output > 0
 - Fails with probability ↓ O(2^-2B)

- **MSE is low when fails**
 - MSE ≤ O(2^-2B)

Acknowledgment

This work was supported in part by Systems on Nanoscale Information fabrics (SONIC), one of the six SRC STARnet Centers, sponsored by MARCO and DARPA.