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Abstract—Margin hyperplane classifiers such as support vector
machines have achieved considerable success in various classifi-
cation tasks. Their simplicity makes them suitable candidates
for the design of embedded intelligent systems. Precision is an
effective parameter to trade-off accuracy and resource utilization.
We present analytical bounds on the precision requirements of
general margin hyperplane classifiers. In addition, we propose
a principled precision reduction scheme based on the trade-
off between input and weight precisions. We present simulation
results that support our analysis and illustrate the gains of our
approach in terms of reducing resource utilization. For instance,
we show that a linear margin classifier with precision assignment
dictated by our approach and applied to the ‘two vs. four’ task
of the MNIST dataset is ∼ 2× more accurate than a standard
8 bits low precision implementation in spite of using ∼ 2 × 104

fewer 1 bit full adders and ∼ 2 × 103 fewer bits for data and
weight representation.

Index Terms—Fixed-point, precision, accuracy, resource con-
strained machine learning.

I. INTRODUCTION

Machine learning algorithms have proven to be very effective
in extracting complex patterns from data. However, due to
their high computational and storage complexity, today these
systems are deployed in the cloud and on large-scale general-
purpose computing platforms such as CPU and GPU-based
clusters [1]. A key challenge today is to incorporate inference
capabilities into untethered (embedded) platforms such as cell
phones, autonomous unmanned vehicles, and wearables. Such
platforms, however, have stringent limits on available energy,
computation, and storage resources. Enabling such on-device
intelligence necessitates a fresh look at the design of resource-
constrained learning algorithms and architectures.

Several techniques can be employed in order to reduce the
implementation complexity of machine learning algorithms.
Most of such techniques address only the storage complexity
and memory requirements. For instance, parameter sparsifi-
cation, popularly known as pruning [2], attempts to force
a sparse, and hence memory efficient, representation of the
model weights. Alternatively, parameter sharing [3] achieves
the same goal via weight clustering. In contrast, finite-precision
implementations [4] not only reduce memory requirements, but
also have a profound impact on the computational complexity.
Reducing the numerical precision while maintaining inference
accuracy can be realized by leveraging the training algorithm
as demonstrated in binarized neural networks [5]–[8]. While
impressive results have been observed, such approaches do
not provide any statistical guarantees on the degradation in

accuracy of inference and incurs a significant overhead in terms
of optimization effort.

An alternative approach to obtain the finite-precision re-
quirements of machine learning algorithms is to analytically
characterize the effects of quantization noise on its accuracy.
Such a characterization has no optimization overhead and even
provides accuracy guarantees. Previous work has demonstrated
the effectiveness of such an approach to obtain the minimum
precision requirements for just the inference (forward) path
in deep neural networks [9], [10]. However, a corresponding
analytical approach to obtain the precision of both the training
(backward) path and inference remains elusive. Such an
approach needs to be able to provide answers to questions
such as: is there a way of choosing the minimum precision
of data, weights, and internal signal representations? Are
these precisions interdependent? How should one choose the
precision of the training algorithm? Our work addresses these
questions for the case of general margin hyperplane classifiers.

In fact, the questions listed above have been answered for
the popular least mean-squared (LMS) adaptive filter [11]–[17]
in the context of digital signal processing and communications
systems. It turns out that there is a trade-off between data
and coefficient precision in order to achieve a desired SQNR
at the output. Furthermore, the precision of the LMS weight
update block needs to be greater than that of the coefficient in
the filter to avoid a premature termination of the convergence
process. This paper leverages these insights in the design of
fixed-point machine learning algorithms.

A. Contributions

We propose an analytical framework to predict precision
vs. accuracy trade-offs into the design of fixed-point learning
algorithms thereby eliminating the need for trial-and-error.
In our preliminary work [18], we addressed the issue of
fixed-point linear support vector machines (SVM). In this
work, we build on these results to obtain complete and
rigorous set of bounds for general margin hyperplane classifiers.
Specifically, we consider classifiers using non-linear input
mapping (NLIM), non-linear output mapping (NLOM), also
known as kernels, and quadratic forms. We analyze the trade-
off between data and weight precisions. In addition, we propose
a principled approach to reduce the precision of various
algorithmic parameters while maintaining fidelity to the ideal
(floating-point) accuracy. We quantify the benefits of this
precision reduction in terms of computational (# of 1 b full
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Fig. 1: Illustration of the geometry of a margin hyperplane classifier.

adders) and representational (# of bits) costs. We test and
validate all our results through simulations on the Breast Cancer
Dataset from the UCI Machine Learning Repository [19] and
the MNIST Dataset for handwritten character recognition [20].

The rest of this paper is organized as follows: in Section II,
we present necessary background. Sections III and IV contain
analysis for classification and training, respectively. Simulation
results are presented in Section V. We conclude in Section VI.

II. BACKGROUND

A. The Classification Problem

Given a feature vector x of dimension D, with a correspond-
ing unknown true label y ∈ {±1}, it is desired to predict the
class it belongs to. There are several approaches to solving
the problem, amongst which are hyperplane classifiers. These
separate the feature space by means of a hyperplane and assign
a predicted label ŷ based on the relative position of the feature
vector with respect to the hyperplane. For generalizability, it
is often desired to determine a maximum margin separating
hyperplane in the feature space (see Fig. 1) as is the case for
SVMs [21]. The classifier is said to have a soft margin when
some of the feature vectors are allowed to lie within the margin
and hence may be misclassified.

The simplest, yet effective, such classifier is a linear classifier
which predicts the label as follows:

wTx + b
ŷ=1

R
ŷ=−1

0 (1)

where w is the weight vector and b is the bias term. For
notational convenience, we reformulate (1) into an equivalent
affine form:

wTx
ŷ=1

R
ŷ=−1

0 (2)

by absorbing the bias term b into the weight vector and
extending the feature space by one: w ←

[
b wT

]T
and

x←
[
1 xT

]T
. Often, data statistics make the classification

problem linearly non-separable in the input feature space. To
circumvent this issue, one method is to map the input feature

space to a higher dimension, i.e., x → φ(x) such that it
becomes linearly separable, i.e.:

wTφ(x)
ŷ=1

R
ŷ=−1

0 (3)

We refer to this method as non-linear input mapping (NLIM).
The non-linear map φ(x) typically lifts the data to a much
higher dimension. Consequently, the dimension of the weight
vector w in (3) is greater than that in (2).

Sometimes, it is impractical to map the input into a space
where the data is linearly separable. The reason is that the
corresponding dimension may be too large or even infinite. A
remedy to this problem is the popular kernel trick which we
refer to as non-linear output mapping (NLOM). The idea is to
perform the similarity operation (projection, distance, etc.) in
the original (lower dimensional) feature space and then apply
a kernel to the result, as shown below:

Ns∑
i=1

αiK(si,x) + b
ŷ=1

R
ŷ=−1

0 (4)

where K(·, ·) is the kernel, b is a bias term, si’s are called
support vectors, and αi’s are the Ns constants associated with
the Ns support vectors. The support vectors found during
training characterize the margin of the separating region.
Their number depends on the size of the training set and
the dimensionality of the input and output spaces. Note that
since the support vectors are obtained through training, it is
not possible to absorb the bias term into the kernel in a similar
fashion as in (2).

For the dot product kernel K(si,x) = sTi x, it can be seen
that (2) and (4) are identical by letting w =

∑Ns
i=1 αisi and ex-

tending the feature space by one. A slightly more sophisticated
kernel is the polynomial kernel: K(si,x) = (sTi x)d where d
is the order of the polynomial. Another popular kernel is the
radial basis function (RBF): K(si,x) = exp(− 1

2 ‖si − x‖2).
This kernel maps the data into an infinite-dimensional space.

In [22], a reformulation for the second order polynomial
kernel SVM was proposed. Essentially, using the fact that
(si

Tx)2 = xT (sis
T
i )x, one can reformulate (4) as:

xTKx
ŷ=1

R
ŷ=−1

0 (5)

where K =
∑Ns
i=1 αisis

T
i . Note that extending the feature

space by one allowed us to absorb the bias term into the
matrix K. This reformulation is attractive for of two reasons:
1) the computational cost reduces from Ns inner products in
RD to D + 1 inner products in RD (typically Ns � D); 2)
there is no need to store any support vectors.

B. Learning Classifier Parameters

It is possible to train hyperplane margin calssifiers on the
fly using the stochastic gradient descent (SGD) algorithm. For
a linear classifier, the instantaneous loss function is:

Q(yn,xn,w) = λ ‖w‖2 + max{0, 1− ynwTxn} (6)
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where yn is the true label corresponding to the nth sample xn.
The hinge loss term in (6) contributes to the margin and λ is a
regularizer. The optimum weight vector w that minimizes this
loss function can be determined using SGD via the following
updates [23]:

wn+1 = (1− γ λ)wn +

{
0 if ynw

T
nxn > 1,

γ yn xn otherwise
(7)

where γ is the learning rate. For NLIM classifiers, the weights
can be trained in a similar manner as follows:

wn+1 = (1− γ λ)wn +

{
0 if ynw

T
nφ(xn) > 1,

γ yn φ(xn) otherwise.
(8)

For NLOM classifiers, we will consider only the decision
directed mode. This is because NLOM requires knowledge
of the support vectors that arise during training, and hence
obtaining an SGD procedure to train such a system is difficult.

Finally, the quadratic form of (5) suggests a straightforward
SGD training method. Indeed, as the gradient ∇K

(
xTKx

)
=

xxT , the update equation is given by:

Kn+1 = (1− γ λ)Kn +

{
0 if ynx

T
nKxn > 1,

γ yn xnx
T
n otherwise.

(9)

where L2 regularization is applied to K.
Figure 2 depicts the architectures of the various classifiers

considered with online training weight update blocks shown for
linear, NLIM, and quadratic form classifiers. The multiplica-
tions and additions are element-wise. The precision assignment
per dimension for each signal considered in the upcoming
analysis is highlighted. These are input precision BX , weight
precision BF , and weight update precision BW . Next, we will
obtain lower bounds on these precisions in order to achieve a
desired level of accuracy.

III. CLASSIFIER PRECISION
In this section, we assume that the classifier has been

pretrained in floating-point and we analytically study how
much can it be quantized and how does its accuracy vary
with its precision. In our analysis, we assume without loss
of generality that all quantities of interest lie between ±1.
This can be achieved for data via scaling and for the weights
by forcing saturation upon each iteration. Finally, unless
otherwise stated, we allow the precision of internal signals to
grow arbitrarily. That is we do not incorporate intermediate
round-offs in our analysis. For instance, a length D dot
product, with inputs and weights quantized to BX and BF
bits, respectively, requires (BX + BF )-bit multipliers and
(BX+BF +dlog2(D)e)-bit adders. The upcoming analysis can
be extended by considering round-off noise terms but would
become much less tractable. Figure 1 shows the geometric
configuration of a margin hyperplane classifier. This illustration
reveals interesting insights upon which we build our analysis.

A. Geometric Lower Bounds

The first result exploits the geometry of the classifier to
provide a lower bound on the precision which guarantees that
the quantized feature vectors lying outside the margin are

classified correctly. The geometric lower bounds (GLB) are
conservative in the sense that they are sufficient conditions
for fixed-point classifiers to have an average accuracy close to
their trained floating-point counterparts.

Finite precision computation modifies (2) to:

(w + qw)T (x + qx)
ŷ=1

R
ŷ=−1

0 (10)

where qx ∈ RD and qw ∈ RD are the quantization noise
terms in x and w respectively. Each element of qx, except
the first one, is a random variable uniformly distributed with
support [−∆X

2 , ∆X

2 ], where ∆X = 2−(BX−1) is the input
quantization step. The first term in qx is zero. Similarly, each
element of qw is a random variable uniformly distributed with
support [−∆F

2 , ∆F

2 ], where ∆F = 2−(BF−1) is the coefficient
quantization step. This uniform assumption is standard [12],
has been found to be accurate in signal processing and
communications systems, and validated by the experimental
results in our paper. Note that quantization perturbs both the
feature vector x and the separating hyperplane defined by w.

In what follows, for a feature vector x, let us denote by
ŷfl(x) the label predicted by the floating-point classifier and
by ŷfx(x) the one predicted by the corresponding fixed-point
classifier. The notation a_ denotes a vector a without the first
element. We start with the linear classifier and consider the
GLB on BX .

Theorem 1 (Geometric Lower Bound on BX for a Linear
Classifier).
Given BF , and w, ∀x ∈ RD such that |wTx| > 1, ŷfx(x) =
ŷfl(x) if

BX > log2

(
||w_||

√
D − 1

1− 2−BF ||x||
√
D

)
(11)

where BF > log2

(
||x||
√
D
)

.

Proof. See Appendix A.

The GLB for a linear classifier reveals the following insights:
1) larger margin (i.e., smaller ||w|| in Fig. 1) allows a greater
reduction of BX , 2) there is a trade-off between BX and BF ,
and 3) input precision BX increases with dimension D and
||x|| . Figure 3 shows the trade-off between BX and BF for
several values of the dimension D. In each case, the starting
value of BF corresponds to the condition of Theorem 1.

Note that Theorem 1 is specific to a single feature vector x
and can be extended to a dataset.

Corollary 1.1 (Geometric Lower Bound on BX for a Linear
Classifier on a Dataset).
Given BF , and w, ∀x ∈ RD such that |wTx| > 1, ŷfx(x) =
ŷfl(x) if

BX > log2

 ||w_||
√
D − 1

1− 2−BF max
x∈X
||x||
√
D

 (12)

where BF > log2

(
max
x∈X
||x||
√
D

)
.
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Fig. 2: Architectures of various margin hyperplane classifiers showing the precision assignments per dimension, and the classifier and weight update blocks for:
(a) linear, (b) NLIM, (c) quadratic form, and (d) the NLOM classifier. DP denotes a dot product block, MVM denotes a matrix vector multiplier, and TP
denotes a tensor product block.

Classifier type Geometric Lower Bound on BX given BF Geometric Lower Bound on BF given BX Remarks

Linear
BX > log2

(
||w_||

√
D−1

1−2−BF ||x||
√
D

)
where BF > log2

(
||x||
√
D
)

.

BF > log2

(
||x||
√
D

1−2−BX ||w_||
√
D−1

)
,

where BX > log2

(
||w_||

√
D − 1

)
.

x ∈ RD
|wTx| > 1

NLIM
BX > log2

(
||w_||

√
Dφ−1

1−2−BF ||φ(x)||
√
Dφ

)
where BF > log2

(
||φ(x)||

√
Dφ
)
.

BF > log2

(
||φ(x)||

√
Dφ

1−2−BX ||w_||
√
Dφ−1

)
,

where BX > log2

(
||w_||

√
Dφ − 1

)
.

φ ∈ RDφ
|wTφ(x)| > 1

NLOM
BX > log2

( √
D
∥∥∥∑Ns

i=1 αi∇xK(si,x)
∥∥∥

1−2−BF
√
D
∑Ns
i=1‖αi∇si

K(si,x)‖

)
where BF > log2

(√
D
∑Ns
i=1 ‖αi∇siK(si,x)‖

)
.

BF > log2

( √
D
∑Ns
i=1‖αi∇si

K(si,x)‖
1−2−BX

√
D
∥∥∥∑Ns

i=1 αi∇xK(si,x)
∥∥∥
)

where BX > log2

(√
D
∥∥∥∑Ns

i=1 αi∇xK(si,x)
∥∥∥).

x ∈ RD∣∣∣∣ Ns∑
i=1

αiK(si,x)

+b

∣∣∣∣ > 1

Quadratic form
BX > log2

(
2‖(Kx)_‖

√
D−1

1−2−BF D‖x‖2

)
where BF > log2

(
D ‖x‖2

)
.

BF > log2

(
D‖x‖2

1−2−(BX−1)‖(Kx)_‖
√
D−1

)
where BX > log2

(
2 ‖(Kx)_‖

√
D − 1

)
.

x ∈ RD
|xTKx| > 1

TABLE I: Table of GLBs for linear, NLIM, NLOM, and quadratic form classifiers. The classifier parameters, for each case, are as defined in Section II. The
precision assignments are as shown in Figure 2. Under these conditions we have ŷfx(x) = ŷfl(x). The first row identical to Theorem 1. The proofs of these
bounds can be found in Appendix A.

(B
it

s)

(Bits)

Increasing  

Fig. 3: Illustration of the GLB for a linear classifier showing trade-off between
input (BX ) and weight (BF ) precisions, and dependence on the dimension (D).
In this example, the values of ||w_|| and ||x|| are taken to be the mean norm
of the corresponding vectors assuming each entry is random and uniformly
distributed between -1 and 1.

In Table I, we list the GLB for the different classifiers.
These lower bounds on precision guarantee that any feature

vector lying outside the margin of a floating-point classifier is
identically classified by the fixed-point counterpart. The GLB
is a guideline on the safe exploitation of the margin. Note that
we may derive a GLB on BX given BF or on BF given BX .
Each of these GLBs can be extended for a classifier operating
on a dataset as in Corollary 1.1. Please refer to Appendix A
for the proofs.

Figure 4 shows a comparison across linear, NLIM, and,
quadratic form classifiers. It appears that the NLIM classifier
has the highest input precision requirement, followed by the
quadratic form and linear classifiers, in that order. The quadratic
form classifier seems to have the highest weight precision
requirement.

B. Probabilistic Upper Bounds

The GLB provides a lower bound on the precision require-
ments to ensure that fixed-point decisions are identical to
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Fig. 4: Comparison of the GLB across classifier types. The input dimension is
arbitrarily chosen to be D = 50. For the NLIM classifier, the map considered
is the second order polynomial one (Dφ = D2). For each case, inputs and
weights are random, uniformly distributed between -1 and 1, per dimension.
To obtain average bounds, 1000 datasets are generated. The GLBs plotted are
the mean bounds in each case.

floating-point for feature vectors lying outside the margin
of the classifier. However, it does not provide quantitative
guarantees on the fixed-point accuracy. Probabilistic upper
bounds (PUBs), introduced next, upper bound the worst-case
fixed-point accuracy for a given precision.

In what follows, we employ capital letters for random
variables. We define probability of mismatch pm between the
decisions made by the floating-point and fixed-point algorithms
as pm = Pr{Ŷfx 6= Ŷfl}, where Ŷfx is the output of the
fixed-point classifier and Ŷfl is the output of the floating-
point classifier. A small mismatch probability indicates that
the classification accuracy of the fixed-point algorithm is very
close to that of the floating-point algorithm. Indeed, if we
know the accuracy of the floating-point system quantified by
its probability of error pe,fl = Pr{Ŷfl 6= Y } (Y is the true
output) then we can obtain an upper bound on the fixed-point
probability of error pe,fx = Pr{Ŷfx 6= Y }:

Proposition 1. The fixed-point probability of error is upper
bounded as follows:

pe,fx ≤ pe,fl + pm (13)

The right hand side represents the union bound of two
events: 1) misclassification, and 2) incorrect classification due
to quantization.

Note that pe,fx is the quantity of interest as it characterizes
the accuracy of the fixed-point system. While pe,fl is a metric
of the algorithm itself and does not depend on quantization,
pm is the term that captures the impact of quantization on
accuracy and we hence use it as a proxy for pe,fx in order to
evaluate the accuracy of a fixed-point system. In what follows,
we obtain analytical upper bounds on pm as a function of the
precision of the fixed-point system.

It turns out that, for all the classifiers considered in Fig. 2,
the mismatch probability pm is upper bounded as follows:

Theorem 2 (Probabilistic Upper Bound on pm). Given BX
and BF , the upper bound on the mismatch probability of a
hyperplane classifier is given by:

pm ≤
1

24

(
∆2
XE1 + ∆2

FE2

)
(14)

Classifier
type E1 E2

Linear E
[
‖w_‖2

|wTX|2

]
E
[
‖X‖2
|wTX|2

]
NLIM E

[
‖w_‖2

|wT φ(X)|2

]
E
[
‖φ(X)‖2
|wT φ(X)|2

]

NLOM E


∥∥∥∥∥Ns∑i=1

αi∇XK(si,X)

∥∥∥∥∥
2

∣∣∣∣∣Ns∑i=1
αiK(si,X)+b

∣∣∣∣∣
2

 E


Ns∑
i=1
‖αi∇si

K(si,X)‖2∣∣∣∣∣Ns∑i=1
αiK(si,X)+b

∣∣∣∣∣
2


Quadratic

form 4E
[
‖(KX)_‖2

|XTKX|2

]
E
[
‖X‖4

|XTKX|2

]

TABLE II: List of E1 and E2 appearing in the PUB (Theorem 2) for linear,
NLIM, NLOM, and quadratic form classifiers. For each case, the classifier
parameters, as defined in Section II, are pre-trained in floating-point. The
expectations are taken over random inputs. The precision assignments are as
shown in Figure 2.

where, for each case, the values of E1 and E2 are listed in
Table II.

Proof. See Appendix B.

In practice, the statistics (i.e., the expected values E1 and
E2 in (14)) are calculated empirically. Note that the mismatch
probability bound is increasing in ∆X and ∆F , which is ex-
pected as higher quantization noise variance leads to increased
mismatch between fixed and floating-point algorithms.

Equation (14) reveals an interesting trade-off between input
precision BX and weight precision BF . Indeed, in (14), the
first term, ∆2

XE1, is the input quantization noise power gain
while the second, ∆2

FE2, is the weight quantization noise
power gain. Depending on the values taken by E1 and E2 it
might be that one of the two terms dominates the sum. If so,
then it would imply that one of BF or BX is unnecessarily
large and hence can be reduced without increasing pm. An
intuitive first step to obtain a tighter upper bound is to make
the two terms of comparable order, i.e., set ∆2

XE1 = ∆2
FE2

by constraining BX and BF as follows:

BX −BF = round

(
log2

√
E1

E2

)
(15)

where round() denotes the rounding operation. This is an
effective way of taking care of one of the two degrees of
freedom introduced by (14).

One way to employ (15) is to consider minimizing the upper
bound in (14) subject to the constraint BX + BF = c for
some constant c. Indeed, it can be shown that (15) would be a
necessary condition of the corresponding solution.

From the expressions of E1 and E2 in Table II we note two
points. First, for each classifier, the denominator within the
expectation operator represents the confidence in classification.
This means that, the better the classifier separates the data,
the smaller E1 and E2 are expected to be. Hence, better data
separability implies better tolerance to quantization, which is to
be expected. Second, the numerators represent functions of the
magnitudes of weight and input vectors in the decision space.
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Such magnitudes are direct functions of dimensionality and
margin. Consequently, we may infer that higher dimensionality,
or smaller margins, increase the values of E1 and E2, and
hence lead to an increase in the precision requirements of the
classifier. This correlates well with our observations in the case
of the GLB.

The results presented in this section provide useful insights to
determine suitable precision allocations for inputs and weights.
First, the GLBs offer a condition under which the behavior
of a fixed-point system is expected to be similar to that of
the corresponding floating-point one. However, they do not
provide analytical guarantees on the resulting accuracy. The
PUBs do, and (15) captures an interesting trade-off between
both precisions. In practice, it is possible to use both sets of
bounds to efficiently determine minimal precisions for a fixed-
point implementation. For example, (15) can first be used to
determine the optimal difference between BX and BF , then
the GLB can be used to find a suitable pair of (BX , BF ).
Finally, the PUB can be used to estimate the expected accuracy
loss. We shall demonstrate this approach in Section V.

IV. PRECISION IN TRAINING

In the preceding discussion, all learning parameters were
assumed to have been obtained after full-precision training.
There are many applications where reduced-precision training
has several merits. These include learning on edge devices
in order to enable continuous tracking, have better privacy
guarantees, and reduce communication overhead [24]. For such
applications, it is reasonable to assume a full precision baseline
with desirable convergence properties has already been designed
and its information is available. Thus, setting feedforward
precisions may be done via our proposed analysis above. In
addition, weight update precision needs to be determined so
that edge training exhibits statistically similar convergence
behavior. In this section, we consider the problem of finding
precision requirements on BW in the updates when training is
done in fixed-point with feedforward precisions set to BX and
BF .

Consider a linear classifier. Note that the right hand side of
(7) includes an attenuation term (1− γ λ)wn and an update
term equal to 0 or γ yn xn = ±γxn where xi ∈ [−1, 1] for
i = 1 . . . D. Without loss of generality, we assume that floating
point convergence is achieved for λ = 1 and some small value
of γ. Therefore, the attenuation factor (1− γ λ) is less than
or close to unity independent of BW .

Our next result ensures that the non-zero update term in (7) is
non-zero during training in spite of weight update quantization.

Theorem 3 (Weight Update Requirements for a Linear Classi-
fier).
The following lower bound on weight update precision BW is
a sufficient condition to ensure full convergence:

BW ≥ BX − log2(γ) (16)

when BX and BF are the input and coefficient precisions,
respectively.

Proof. Each step in (7) has magnitude |γx| where x is a scalar
value taken by the different components of x. For any non-
zero update to remain non-zero after quantization, we need

|γx| > 1
2bmin where bmin = 2−(BW−1) is the value of the

least significant bit (LSB) in the weight update block. So we
require |γ||x| > 1

22−(BW−1) = 2−BW . This has to be satisfied
for any non-zero value of x, but the minimum non-zero value
taken by |x| is 2−(BX−1). So we get |γ| · 2−(BX−1) > 2−BW ,
which can be written as:

BW > BX − 1− log2(γ)⇔ BW ≥ BX − log2(γ).

Theorem 3 provides a sufficient condition for convergence.
As the SGD approximates the true gradient at every step, fewer
bits than specified in (16) may work occasionally. We refer to
these as boundary cases and present a detailed analysis on the
corresponding learning behavior in Appendix C.

For a NLIM classifier, the exact same discussion applies.
This is because (7) and (8) are structurally equivalent. For a
quadratic form classifier the results changes a little bit. Indeed,
every entry (i, j) in the matrix K has an update term equal to
|γxixj | in absolute value. The product of two scalars increases
the precision by a factor of 2. Following the same argument
as in Theorem 3, we have the following result:

Corollary 3.1 (Weight Update Requirements for a Quadratic
Form Classifier).
The following lower bound on weight update precision BW is
a sufficient condition to ensure full convergence:

BW ≥ 2BX − log2(γ) (17)

when BX and BF are the input and coefficient precisions,
respectively.

While the required precision for full convergence has been
slightly modified in this case, the discussion of the learning
behavior for lower precisions is exactly similar to the one
following Proposition 3. This is because that discussion
observes the inputs starting from the most significant bit (MSB)
and towards the LSB. The set [−1, 1] being closed under
multiplication, the update terms are just as significant as those
in the case of a linear classifier when looking at the MSB and
onwards.

V. SIMULATION RESULTS

In this section, we validate the analysis of Sections III and
IV via simulation with the UCI Breast Cancer dataset [19]
and the ‘two vs. four’ task applied to the MNIST dataset for
handwritten character recognition [20].
A. Complexity in Fixed-Point

We identify two implementation costs associated with the
implementation of signal processing and machine learning
systems: the computational cost and the representational cost.

The computational cost is measured in numbers of 1 bit full
adders (#FA) to come up with one decision. Dot products are
the predominant computing structures in machine learning
systems. We assume they are realized in a multiply and
accumulate (MAC) fashion where additions and multiplications
are implemented using ripple carry adders and Baugh-Wooley
multipliers, respectively. Consequently, the number of full
adders used to compute the dot product between two D
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Classifier
type

BX = BF BF −BX dictated by (15)
FX Sim GLB PUBe FX Sim GLB PUBe

Linear (4,4) (4,4) (6,6) (2,4) (2,4) (4,6)
NLIM (4,4) (6,6) (8,8) (4,7) (4,7) (6,9)
NLOM (2,2) (6,6) (3,3) (2,2) (6,6) (3,3)

Quadratic
form (5,5) (6,6) (5,5) (2,5) (4,7) (3,6)

TABLE III: Summary of Fig. 5 illustrating minimum precision requirements
for hyperplane classifiers on the Breast Cancer dataset dictated by FX Sim,
GLB, and PUBe when BX = BF and BF −BX determined by (15).

dimensional vectors with entries quantized to BX bits and
BF bits respectively is,

DBXBF + (D − 1)(BX +BF + dlog2(D)e − 1) (18)

and the output is (BX +BF + dlog2(D)e) bits.
Equation (18) describes the computational cost of the linear

classifier and the NLIM one (but with D replaced by Dφ). The
quadratic form classifier will have a total computational cost
equal to:

D2BXBF +D(D − 1)(BX +BF + dlog2(D)e − 1)

+DBX(BX +BF + dlog2(D)e)
+ (D − 1)(2BX +BF + 2dlog2(D)e − 1). (19)

For NLOM, we consider the computational cost dependent
on precision. For instance, the evaluation of the norm difference
when using a RBF kernel, which has a total computational
cost of:

Ns(DBX,F +DB2
X,F + (D − 1)(2BX,F + dlog2(D)e − 1))

(20)

where BX,F = max(BX , BF ).
The representational cost is defined as the total number of

bits needed to represent all parameters (inputs and weights). It
is a measure of the complexity of storage and communications.
Depending on the application, either one of the representational
costs associated with weights or inputs may be more important.

B. Validation of Bounds

We consider two scenarios for each classifier type:
• Scenario A: BX = BF .
• Scenario B: BX −BF defined by (15).

For each of the two scenarios:
1) We sweep the value of BX (and the corresponding value

of BF ) and perform fixed-point simulation (FX Sim) to
obtain the associated true fixed-point classification error
rate (pe).

2) For each pair (BX , BF ), we find the corresponding
probabilistic upper bound on the classification error rate
(PUBe) based on Proposition 1 and the PUB (Theorem
2).

3) We find the smallest value of BX (and hence BF ) that
satisfy the GLB in Table I.

Figure 5 shows our results for linear, NLIM (second order
polynomial map), quadratic form, and NLOM (RBF kernel)
classifiers for the Breast Cancer dataset. The training and
testing sets were obtained by independently sampling 500
random samples for each from the dataset. The classifiers were

pretrained in floating-point using SGD with γ = 2−10 and
λ = 1 except for the NLOM classifier which was trained using
the commercial LIBSVM package [25].

For the linear classifier, Fig. 5(a) shows the validity of the
GLB and the PUBe for equal input and weight precisions.
Indeed, fixed-point simulations for precisions larger than the
GLB (4 bits) offer no significant accuracy gains while lower
precisions seem to quickly degrade the accuracy. The PUBe
also successfully upper bounds the error obtained in fixed-point.
Figure 5(b) shows the benefits of using (15) which dictates
in this example that BF = BX + 2. Indeed, not only are the
GLB and PUBe still valid, but it is also possible to decrease
BX to 2 bits, as reflected by the GLB and supported by the
fixed-point simulation, while maintaining good accuracy.

Similar trends are observed for NLIM (Fig. 5(c,d)) and
quadratic form (Fig. 5(e,f)) classifiers. Indeed, the GLB
reaches the precision value after which the fixed-point accuracy
saturates to within 2 bits, and the PUBe successfully upper
bounds the fixed-point probability of error. Interestingly, the
PUBe is much tighter for the quadratic form classifier as
compared to the NLIM classifier.

Figure 5(g) shows our results for the NLOM classifier. There
are a total of 98 support vectors. In this case (15) results in
BX = BF , this is why we have only one plot. Observe that
the PUBe is much tighter than the GLB. Indeed, the PUBe
tracks the fixed-point simulations to precisions as low as 3 bits.
The GLB predicts 6 bits.

A detailed breakdown of the minimum precision require-
ments determined by FX Sim, GLB, and PUBe for all classifier
types is presented in Table III.

So far, all results were performed on the Breast Cancer
dataset. To show the generality of our results, we also conduct
a similar experiment on the ‘two vs. four’ task on the MNIST
dataset where we consider a linear classifier. Again, the
classifier is first pretrained using SGD as discussed in Section
II.

The training and test sets were obtain by selecting the ‘two’
and ‘four’ instances from the original MNIST dataset. Overall,
we had 11800 training and 2014 testing samples, respectively.
The classifier was trained using SGD with γ = 2−10 and
λ = 1. The results are shown in Fig. 6. Once again, we find
the numerical results to be consistent with the analysis of
Section III.

Interestingly, in the experiments on the Breast Cancer
Dataset, (15) seemed to always yield a BF larger than BX
by a few bits (2 or 3) except for the case of NLOM. For the
MNIST experiment, this trend seems to continue and is even
more pronounced as the difference BF −BX = 6 bits. In fact,
this should not be surprising. Indeed, the feature vectors in
the MNIST dataset are grayscale images whereas the weights
define the separating hyperplane. It hence reasonable to expect
the precision requirements of weights to be higher as slight
changes to the separating hyperplane are more detrimental to
the classification accuracy.

C. Complexity vs. Accuracy Trade-offs

We compare costs and performance for the following setups:
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(e)
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  (bits)
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Fig. 5: Results for classification on the Breast Cancer Dataset: classification error rate pe in fixed-point simulations (FX Sim), analytical probabilistic upper
bound (PUBe), geometric lower bound (GLB) for BX = BF and BX − BF determined by (15) for linear (a,b), NLIM (second order polynomial) (c,d),
quadratic form (e,f), and NLOM (RBF) (g) classifiers. For the NLOM classifier, (15) dictates BX = BF hence Scenarios A and B collapse into one. The
PUBe is found to successfully upper bound the fixed-point error obtained through FX Sim. The GLB identifies a precision for which FX Sim settles. The use
of (15) makes it possible to reduce precision but maintain accuracy.

1) minimum value of BX specified by the GLB with BX =
BF ,

2) minimum value of BX specified by the GLB with the
difference between BX and BF satisfying (15),

3) 8 bits quantization for all parameters,
4) an arbitrary precision assignment not satisfying the bounds

presented in Section III.
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(a)

  

  (bits)

        

(b)
Fig. 6: Results for linear classification on the ‘two vs. four’ task for the MNIST Dataset: classification error rate pe in fixed-point simulations (FX Sim),
analytical probabilistic upper bound (PUBe), geometric lower bound (GLB) for (a) BX = BF and (b) BX − BF = 6 as dictated by (15). The PUBe is
found to successfully upper bound the fixed-point error obtained through FX Sim. The GLB identifies a precision for which FX Sim settles. The use of (15)
makes it possible to reduce precision but maintain accuracy.

Linear Classifier

(BX , BF )
Computational
cost (#FA)

Representational
cost (bits) Test error

(8, 8) 894 168 6.6%
(4, 4) 286 84 5.9%
(2, 4) 178 64 7.5%
(2, 3) 146 53 13.5%

NLIM (second order polynomial) Classifier

(BX , BF )
Computational
cost (#FA)

Representational
cost (bits) Test error

(8, 8) 5.9× 103 1048 4.4%
(6, 6) 3.7× 103 786 4.4%
(4, 7) 3.1× 103 722 4.0%
(3, 3) 1.4× 103 393 11.8%

Quadratic form Classifier

(BX , BF )
Computational
cost (#FA)

Representational
cost (bits) Test error

(8, 8) 11.9× 103 1048 3.2%
(7, 7) 9.5× 103 917 3.2%
(4, 7) 5.6× 103 887 3.0%
(4, 4) 3.8× 103 524 9.8%

NLOM (RBF) Classifier

(BX , BF )
Computational
cost (#FA)

Representational
cost (bits) Test error

(8, 8) 10× 104 7920 1.8%
(6, 6) 6.6× 104 5940 1.8%
(1, 1) 1.1× 104 990 3.0%

TABLE IV: Results for the Breast Cancer Dataset. Comparison of compu-
tational cost, representational cost, and test error for linear, NLIM (second
order polynomial), quadratic form, and NLOM (RBF) classifiers. The precision
assignments considered are the standard low precision quantization (8,8), the
minimum (BX , BF ) satisfying the GLB when BX = BF , the minimum
(BX , BF ) satisfying the GLB when BF − BX is dictated by (15), and
one arbitrarily chosen assignment violating the bounds in Section III. In the
case of the NLOM classifier, the second and third precision assignments are
identical. In each case, the use of the GLB and (15) makes it possible to
reduce complexity but maintain accuracy.

The first setup takes into account only one half of the
theory proposed in Section III, while the second shows the
possibility and benefits of leveraging both GLB and PUB
for more aggressive, yet principled quantization. We chose
8 bits in the third setup as it is a typical representative of
low precision/high performance arithmetic [26]. The fourth
setup is intended to highlight the drawbacks of aggressive and

(BX , BF )
Computational
cost (#FA)

Representational
cost (bits) Test error

(9, 9) 85× 103 14× 103 2.3%
(8, 8) 70× 103 13× 103 4.4%
(4, 10) 49× 103 11× 103 2.2%
(3, 6) 28× 103 7× 103 8.5%

TABLE V: Results for linear classification on the ‘two vs. four’ task for the
MNIST Dataset: Comparison of computational cost, representational cost, and
test error. The precision assignments considered are the minimum (BX , BF )
satisfying the GLB when BX = BF , the standard low precision quantization
(8,8), the minimum (BX , BF ) satisfying the GLB when BF − BX = 6
as dictated by (15), one arbitrarily chosen assignment of (3,6) violating the
bounds in Section III. The use of the GLB and (15) makes it possible to
reduce complexity but maintain accuracy.

unprincipled quantization.
For the Breast Cancer dataset, Table IV shows how our

principled quantization strategy makes it possible to operate
at low costs while maintaining accuracy. Indeed, for the
linear classifier, an unstructured precision assignment of 2
and 3 bits for inputs and weights, respectively, does reduce
the computational and representational costs, but results in
a relatively high test error. At the expense of only ∼ 1.2×
(178/146) computational cost and ∼ 1.2× representational
cost, ∼ 1.8× classification error rate reduction is possible
using a (2, 4) quantization as dictated by (15) and the GB.
This corresponds to ∼ 5× reduction in computational cost and
∼ 2.6× reduction in representational cost compared to the
traditional 8 bits quantization. Similar trends are observed for
the other classifiers.

Similarly, this comparison for the MNIST experiment is
shown in Table V. Interestingly, we observe here is that the
constraint BX = BF is too harsh. Indeed, although the value
BX = BF = 9 bits determined by the GLB yields a resulting
accuracy ∼ 2× better than the precision assignment of BX =
BF = 8 bits, this should not be considered a satisfactory result.
In fact, when taking into account the trade-off between BX
and BF as described in (15), BF = BX + 6 here, we are able
to reduce BX down to only 4 bits. This corresponds to ∼ 1.7×
and ∼ 1.3× decrease in the computational and representational
costs with a negligible degradation in accuracy. Note that this
quantization strategy results in a classifier ∼ 2× more accurate
than the one quantized to 8 bits in spite of using ∼ 2× 104

fewer FAs and ∼ 2 × 103 fewer bits for data and weight
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representation. This highlights the importance of the analysis
of the trade-off between input and weight precisions that was
described in Section III.

D. Training Behavior

Here we illustrate the the impact of precision on training as
a supporting evidence to the discussion in Section IV. We start
with the Breast Cancer dataset. The feedforward precisions are
set as follows: we choose BX = 6 in order to separate the
Theorem 3 scenario from the three boundary cases in Appendix
C, and we choose BF as specified by the GLB. That way, the
feedforward precisions are minimal in a geometric sense and
the full convergence of the algorithm is determined by the
weight update precision (Theorem 3).

We shall consider a linear and a quadratic form classifier.
We consider two scenarios: training with a small step size (γ =
2−10) and training with a large step size (γ = 2−5). The dataset
is once again split into 500 training and 500 testing samples.
Each time we show the convergence behavior of the training
loss function, which is the objective being minimized, and
the test error rate, which is the target metric to be minimized.
Each experiment is conducted over 30 independent runs and
the curves shown hereafter are ensemble averages over these
runs. For each run, the initial weights are set to zeros and λ
is set to 1.

Figure 7 shows convergence curves for a linear classifier
trained on the Breast Cancer Dataset. We show convergence
curves for weight update precisions of: a) BX − log2(γ)
(Theorem 3), 1− log2(γ) (Boundary Case 1), b) 2− log2(γ)
(Boundary Case 2), and − log2(γ) (Boundary Case 3). As
shown, in both scenarios, a weight update precision of
BX − log2(γ) is enough to mimic floating-point behavior in
fixed-point. For weight update precisions of 1− log2(γ) and
− log2(γ), the occasional sign-SGD updates are not enough
for convergence as discussed in Section IV and Appendix C.
For a weight update precision of 2− log2(γ), we do observe
a decrease in the training loss function and the test error rate
but the accuracies obtained are not as good as those of the
floating-point trials. This demonstrates the sufficiency property
of Theorem 3.

As far as the training loss function is concerned, similar
trends are observed for the quadratic form (Fig. 8) classifier.
Interestingly, the test error rate does go down in spite of
imprecise updates. Nonetheless, we see that higher precision
leads to greater overall accuracy. Note that we not only
considered weight update precision of BX − log2(γ), but also
2BX − log2(γ) as dictated by Corollary 3.1. Results show
that this increased precision only marginally improves the
convergence behavior.

Figure 9 illustrate these results for the ‘two vs. four’
classification task on the MNIST Dataset for linear classification
with a learning rate of 2−10. The feedforward precisions are
again chosen to be minimal in the geometric sense. Those
precisions were determined in the previous subsection to be 4
and 10 for the inputs and weights, respectively. The results here
are very consistent with those observed for the experiments
on the Breast Cancer Dataset. Indeed, it is clearly seen that a
weight update precision of BW = BX − log2(γ) as dictated

by Theorem 3 is of paramount importance for successful
convergence.

E. Discussion on Accuracy of Analysis

We conclude this section by discussing the accuracy of
our analysis in predicting the precision requirements. The key
sources of GLB’s inaccuracy arises from the use of triangle and
Cauchy-Schwarz inequalities, which can be loose, and assuming
worst case quantization noise magnitudes. On the other hand,
PUBe is obtained by application of the Chebyshev inequality,
a relatively more conservative estimate. Nevertheless, both
bounds consistently predict precision requirements within 0 ∼ 2
bits of the empirically obtained minimum thereby providing a
good first estimate.

In addition, our results reveal that the accuracy of the bounds
is a function of the classifier type. The GLB is tightest for
linear classifiers because of their lower dimensionality. As
dimensionality increases, the worst case quantization noise
magnitude approximation gets repeatedly applied making the
GLB looser for non-linear classifiers. In contrast, the PUBe
is found tightest for non-linear classifiers. The use of the
Chebyshev inequality loosens the bound for larger values of
pm. Since non-linear classifiers have a stronger representational
power, it is expected that they would exhibit smaller pm and
consequently have a tighter PUBe.

Finally, for training, Theorem 3 ensures avoidance of
premature stoppage of convergence. The reason why there
is a slight offset between FL and FX convergence is because
feedforward precisions are selected so as to guarantee a small
but non-zero mismatch probability. On the other hand, there is
a slight slow down (with respect to FL training) in the case of
the linear classifier applied to the Breast Cancer dataset. This
is due weight clipping caused by the limited dynamic range
of FX representation.

VI. CONCLUSION

We have presented a theoretical analysis of the behavior of
general fixed-point margin hyperplane classifiers. The results
presented consist of bounds based on the geometry and
statistics of the classification task and on the convergence
conditions of the training task. By characterizing the trade-
off between input and weight precisions, efficient precision
reduction scheme was presented. This framework eliminates
the need for expensive trial-and-error. Furthermore, it presents
guidelines for minimizing resource utilization. This utilization
was captured by the computational and representational costs.
Simulation results shown support the developed theory and
highlight its benefits.

Several insights can be taken from our work. These include
a trade-off between input and weight precision which is useful
for minimizing the overall precision. Furthermore, it was
observed from the GLB that precision increases logarithmically
with the dimensionality of the problem. From the PUB, it
was seen that the mismatch probability between fixed-point
and floating-point classifier decays, at worst, exponentially
with precision. It is in fact possible to derive a tighter
bound on this mismatch probability using the Chernoff bound
which marginally improves this dependence making it double



11

(
γ = 2−10

)

Iteration Index

Tr
ai

n
in

g 
Lo

ss
 F

u
n

ct
io

n

(a)

(
γ = 2−10

)

Te
st

 E
rr

o
r 

R
at

e

Iteration Index
(b)(

γ = 2−5
)

Iteration Index

Tr
ai

n
in

g 
Lo

ss
 F

u
n

ct
io

n

(c)

(
γ = 2−5

)

Te
st

 E
rr

o
r 

R
at

e

Iteration Index
(d)

Fig. 7: Results for linear classifier training on the Breast Cancer Dataset: (a) ensemble training loss function (6) and (b) ensemble test error rate for a small
learning rate; (c) ensemble training loss function and (d) ensemble test error rate for a large learning rate. FL Sim denotes the floating-point simulation. In each
case, a weight update precision of BX − log2(γ) (Theorem 3) is enough to mimic floating-point behavior in fixed-point. Accuracy degradation is observed for
lower precisions. Note that for clarity, we only include comparisons with boundary cases 1, 2, and 3.

exponential in precision. Finally, it was shown that the early
stopping criterion applies to fixed-point training and provides
a sufficient condition on the weight update precision for full
convergence.

Future work includes a deeper dive into the topic of
complexity vs. accuracy in machine learning. The presented
work takes a conservative approach in the model of quantization.
It is possible to shape quantization noise statistics using
dithering during training. For instance, stochastic quantization
or random noise injection can be used. Such approach might
lead to greater reductions in precision. Another line of work is
to study the effects of floating-point quantization. While fixed-
point implementations are usually more efficient than floating-
point ones, the latter benefit from a much wider dynamic range
which could be beneficial to the robustness in classification.
An orthogonal direction is to consider the structure of the
algorithms themselves. It is well established that data-driven
models inhibit large redundancies which can be exploited to
trade-off complexity with robustness. The above constitute the
first steps in the important task of developing a unified and
principled framework to understand complexity vs. accuracy in
the design and implementation of machine learning systems.

APPENDIX A
PROOFS OF GEOMETRIC LOWER BOUNDS

The proof of the GLB is done in three steps:

• Step 1: Determine the output quantization noise No at
the output of the classifier. In this step, we neglect cross
products of quantization noise terms as their contribution
is very small. For the NLOM classifier, this is equivalent

to a first order Taylor expansion on the kernel. For the
linear classifier we have:

No = qTwx + wTqx.

• Step 2: Upper bound the magnitude of No using the
triangle and Cauchy-Schwarz inequalities. Input quantiza-
tion noise terms are upper bounded by 2−BX and weight
quantization noise terms by 2−BF . For the linear classifier
we have:

|No| ≤ |qTwx|+ |wTqx|
≤ ‖qw‖ ‖x‖+ ‖w‖ ‖qx‖
≤ 2−BF ||x||

√
D + 2−BX ||w_||

√
D − 1

where the introduction of the dimension D is due to the
expansion of the norms of x and w.

• Step 3: Set the upper bound on |No| to be less than the
functional margin of the classifier which is equal to 1
(See Fig. 1).

Step 3, up to a rearrangement of terms is equivalent to the
GLB as described in Section III.A. In Table VI, we list the
output quantization noise and corresponding upper bound for
each classifier type.

APPENDIX B
PROOFS OF PROBABILISTIC UPPER BOUNDS

The PUB is proved in 4 steps:
• Step 1: For a single input, obtain the total output

quantization noise No. This is identical to the Step 1
in the proof of the GLB in Appendix A. This output
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Fig. 8: Results for quadratic form classifier training on the Breast Cancer Dataset: (a) ensemble training loss function ((6), matrix (Frobenius) norm replaces
vector norm) and (b) ensemble test error rate for a small learning rate (γ = 2−10); (c) ensemble training loss function and (d) ensemble test error rate for a
large learning rate (γ = 2−5). FL Sim denotes the floating-point simulation. The weight update precision of 2BX − log2(γ) (Corollary 3.1) only marginally
improves the accuracy over that of BX − log2(γ). Note that for clarity, we only include comparisons with boundary cases 1, 2, and 3.(
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Fig. 9: Results for linear classifier training on the ‘two vs. four’ task for the MNIST Dataset: (a) ensemble training loss function (6) and (b) ensemble test
error rate for a learning rate γ = 2−10). FL Sim denotes the floating-point simulation. A weight update precision of BX − log2(γ) (Theorem 3) is enough to
mimic floating-point behavior in fixed-point. Accuracy degradation is observed for lower precisions. Note that for clarity, we only include comparisons with
boundary cases 1, 2, and 3.

quantization noise is a sum of independent input and
weight quantization noise terms.

• Step 2: Compute the variance (σ2
No

) of this output
quantization noise. Because of independence, it is the sum
of the input (σ2

qx→o) and weight (σ2
qw→o) quantization

noise variances referred to the output. For the linear
classifier we have:

σ2
No =

∆2
X

12
||w_||2 +

∆2
F

12
||x||2.

• Step 3: Use this computed variance and Chebyshev’s
inequality to determine the probability of the quantization
noise being larger in magnitude than the floating-point
soft output zo of the classifier. Because the quantization
noise has a symmetric distribution, this probability needs
to be divided by 2 (the mismatch is only caused when
quantization noise and output have opposing signs). The

upper bound is hence derived as follows:

pm =
1

2
P (|No| > |zo|) ≤

σ2
No

2|zo|2
=
σ2
qx→o + σ2

qw→o

2|zo|2
.

• Step 4: Use the law of total probability over the data to
obtain the averaged upper bound on pm. For the linear
classifier we obtain:

pm ≤
∆2
X

24
E

[
‖w_‖2

|wTX|2

]
+

∆2
F

24
E

[
‖X‖2

|wTX|2

]
.

For each classifier type, we list the values of σ2
qx→o, σ

2
qw→o,

and zo in Table VII. The values of E1 and E2 in Table II are
equal to 12

∆2
X
E
[
σ2
qx→o
|Zo|2

]
and 12

∆2
F
E
[
σ2
qw→o
|Zo|2

]
for each classifier

type, respectively.
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Classifier
type Output quantization noise No Upper bound on output quantization noise magnitude |No|

Linear qTwx+wTqx 2−BF ||x||
√
D + 2−BX ||w_||

√
D − 1

NLIM qTwφ(x) +wTqφ(x) 2−BF ||φ(x)||
√
Dφ + 2−BX ||w_||

√
Dφ − 1

NLOM
∑Ns
i=1 αiq

T
si
∇siK(si,x) +

∑Ns
i=1 αiq

T
x∇xK(si,x) 2−BF

√
D
∑Ns
i=1 ‖αi∇siK(si,x)‖+ 2−BX

√
D
∥∥∥∑Ns

i=1 αi∇xK(si,x)
∥∥∥

Quadratic
form 2qTxKx+ xTqKx 2−(BX−1) ‖(Kx)_‖

√
D − 1 + 2−BF ‖x‖2D

TABLE VI: Output quantization noise No and corresponding upper bounds on its magnitude needed to prove the GLB for each classifier type. Note that qx,
qw , qφ(x), qsi , qK are the quantization noise terms of x, w, φ(x), si, and K, respectively.

Classifier type
Input quantization noise variance

referred to output σ2
qx→o

Weight quantization noise variance
referred to output σ2

qw→o
Classifier floating-point output zo

Linear ∆2
X

12
||w_||2

∆2
F

12
||x||2 wTx

NLIM ∆2
X

12
||w_||2

∆2
F

12
||φ(x)||2 wTφ(x)

NLOM ∆2
X

12

∥∥∥∑Ns
i=1 αi∇xK(si,x)

∥∥∥2 ∆2
F

12

∑Ns
i=1 ‖αi∇siK(si,x)‖2

∑Ns
i=1 αiK(si,x) + b

Quadratic form 4
∆2
X

12
||(Kx)_||2

∆2
F

12
||x||4 xTKx

TABLE VII: Input (σ2
qx→o) and weight (σ2

qw→o) quantization noise variances referred to output and classifier floating-point output (zo).

For the quadratic form case, we used the fact that, for a
datapoint x, V ar(xTqKx) =

∆2
F

12 ‖x‖
4. This result is proved

as follows:

V ar(xTqKx) = E
[
(xTqKx)2

]
= xTE

[
qKxxTqTK

]
x

= xTE


q

T
K,1x

...
qTK,Dx

 [qTK,1x . . . qTK,Dx
]x

= xT
∆2
F

12
‖x‖2 ID×Dx =

∆2
F

12
‖x‖4

where qTK,i for i = 1 . . . D are the row vectors of qK and
ID×D is the identity matrix of size D×D. The fourth equality
holds because the quantization terms are independent of each
other making the off-diagonal elements of the matrix in the
third equation a product of two zero-mean independent terms.

APPENDIX C
PRECISION OF TRAINING FOR BOUNDARY CASES

We analyze the learning behavior when the precision is less
than the one predicted predicted by Theorem 3.

As 1 − γλ ≈ 1, we assume (1 − γλ)wi,n ≈ wi,n for i =
1 . . . D. Let K = BW and M = BX . Let x̃i,n = ynxn be the
update term per dimension. The following cases describe the
corresponding two’s complement arithmetic:

Case 1: BW = 1− log2(γ)⇔ γ = 2−(BW−1) then:

γ = 0 .0 . . . 1

wi,n = bw0
.bw1

. . . bwK−1

γx̃i,n = bx0
.bx0

. . . bx0
bx1

. . . bxM−1

where {bwi}K−1
i=0 and {bxi}M−1

i=0 are the binary expansions of
wi,n and xi,n, respectively. Hence, if x̃i,n ≥ 0 → wi,n+1 =
wi,n, and if x̃i,n < 0→ wi,n+1 = wi,n − γ. We hence obtain
a sign-SGD behavior only when x̃i,n < 0. Therefore, in case
I, there is no way to guarantee convergence.

Case 2: BW = 2− log2(γ)⇔ γ = 2−(BW−2) then:

γ = 0 .0 . . . 1 0

wi,n = bw0
.bw1

. . . bwK−2
bwK−1

γx̃i,n = bx0
.bx0

. . . bx0
bx1

bx2
. . . bxM−1

Hence, if x̃i,n ≥ 0.5→ wi,n+1 = wi,n + 0.5γ , if 0 ≤ x̃i,n <
0.5 → wi,n+1 = wi,n , if −0.5 ≤ x̃i,n < 0 → wi,n+1 =
wi,n − 0.5γ and, if −1 ≤ x̃i,n < 0.5 → wi,n+1 = wi,n − γ.
We get a more precise but very noisy estimate of the gradient.
We may observe inaccurate convergence.

Case 3: BW = −log2(γ)⇔ γ = 2−BW then:

γ = 0 .0 . . . 0 1

wi,n = bw0
.bw1

. . . bwK−1

γx̃i,n = bx0
.bx0

. . . bx0
bx0

bx1
. . . bxM−1

Hence, if x̃i,n ≥ 0 → wi,n+1 = wi,n , and if x̃i,n < 0 →
wi,n+1 = wi,n − 2γ. We again get a sign-SGD behavior only
if x̃i,n < 0 but this time the step size has doubled. Again,
there is no way to guarantee any sort of convergence in this
case. Things are even made worse because when updates do
happen, they are two times greater than in the first case.
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