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ABSTRACT

The high computational and parameter complexity of neural networks makes their
training very slow and difficult to deploy on energy and storage-constrained comput-
ing systems. Many network complexity reduction techniques have been proposed
including fixed-point implementation. However, a systematic approach for design-
ing full fixed-point training and inference of deep neural networks remains elusive.
We describe a precision assignment methodology for neural network training in
which all network parameters, i.e., activations and weights in the feedforward path,
gradients and weight accumulators in the feedback path, are assigned close to
minimal precision. The precision assignment is derived analytically and enables
tracking the convergence behavior of the full precision training, known to converge
a priori. Thus, our work leads to a systematic methodology of determining suit-
able precision for fixed-point training. The near optimality (minimality) of the
resulting precision assignment is validated empirically for four networks on the
CIFAR-10, CIFAR-100, and SVHN datasets. The complexity reduction arising
from our approach is compared with other fixed-point neural network designs.

1 INTRODUCTION

Though deep neural networks (DNNs) have established themselves as powerful predictive models
achieving human-level accuracy on many machine learning tasks (He et al., 2016), their excellent
performance has been achieved at the expense of a very high computational and parameter complexity.
For instance, AlexNet (Krizhevsky et al., 2012) requires over 800 × 106 multiply-accumulates
(MACs) per image and has 60 million parameters, while Deepface (Taigman et al., 2014) requires
over 500 × 106 MACs/image and involves more than 120 million parameters. DNNs’ enormous
computational and parameter complexity leads to high energy consumption (Chen et al., 2017), makes
their training via the stochastic gradient descent (SGD) algorithm very slow often requiring hours
and days (Goyal et al., 2017), and inhibits their deployment on energy and resource-constrained
platforms such as mobile devices and autonomous agents.

A fundamental problem contributing to the high computational and parameter complexity of DNNs is
their realization using 32-b floating-point (FL) arithmetic in GPUs and CPUs. Reduced-precision
representations such as quantized FL (QFL) and fixed-point (FX) have been employed in various
combinations to both training and inference. Many employ FX during inference but train in FL, e.g.,
fully binarized neural networks (Hubara et al., 2016) use 1-b FX in the forward inference path but the
network is trained in 32-b FL. Similarly, Gupta et al. (2015) employs 16-b FX for all tensors except
for the internal accumulators which use 32-b FL, and 3-level QFL gradients were employed (Wen
et al., 2017; Alistarh et al., 2017) to accelerate training in a distributed setting. Note that while QFL
reduces storage and communication costs, it does not reduce the computational complexity as the
arithmetic remains in 32-b FL.

Thus, none of the previous works address the fundamental problem of realizing true fixed-point
DNN training, i.e., an SGD algorithm in which all parameters/variables and all computations are
implemented in FX with minimum precision required to guarantee the network’s inference/prediction
accuracy and training convergence. The reasons for this gap are numerous including: 1) quantization

1



Published as a conference paper at ICLR 2019

𝐵𝑊𝑙

𝐵𝐴𝑙 𝐵𝐴𝑙+1
𝒇𝒍()

Input 
batch

Weight 
update

Accumulator 
update

𝐴𝑙+1𝐴𝑙

𝐺𝑙+1
(𝐴)

𝐺𝑙
(𝑊)

𝐵
𝑊𝑙
(𝑎𝑐𝑐)

𝑊𝑙
(𝑎𝑐𝑐)𝑊𝑙

𝐵
𝐺𝑙
(𝑊)

𝐵
𝐺𝑙+1
(𝐴)

Cost 
function

𝑌
(true label)

𝒈𝒍
(𝑾)

()

𝐺𝑙
(𝐴)

𝐵
𝐺𝑙
(𝐴)

𝒈𝒍
(𝑨)
()

𝐴𝑙 𝐵𝐴𝑙𝐵
: quantization 

to 𝐵 bits

Step 1: Forward
Propagation

Step 2: Back
Propagation

Step 3: Update

Figure 1: Problem setup: FX training at layer l of a DNN showing the quantized tensors and the associated
precision configuration Cl = (BWl , BAl , BG
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errors propagate to the network output thereby directly affecting its accuracy (Lin et al., 2016); 2)
precision requirements of different variables in a network are interdependent and involve hard-to-
quantify trade-offs (Sakr et al., 2017); 3) proper quantization requires the knowledge of the dynamic
range which may not be available (Pascanu et al., 2013); and 4) quantization errors may accumulate
during training and can lead to stability issues (Gupta et al., 2015).

Our work makes a major advance in closing this gap by proposing a systematic methodology to
obtain close-to-minimum per-layer precision requirements of an FX network that guarantees statistical
similarity with full precision training. In particular, we jointly address the challenges of quantization
noise, inter-layer and intra-layer precision trade-offs, dynamic range, and stability. As in (Sakr et al.,
2017), we do assume that a fully-trained baseline FL network exists and one can observe its learning
behavior. While, in principle, such assumption requires extra FL computation prior to FX training, it
is to be noted that much of training is done in FL anyway. For instance, FL training is used in order
to establish benchmarking baselines such as AlexNet (Krizhevsky et al., 2012), VGG-Net (Simonyan
and Zisserman, 2014), and ResNet (He et al., 2016), to name a few. Even if that is not the case, in
practice, this assumption can be accounted for via a warm-up FL training on a small held-out portion
of the dataset (Dwork et al., 2015).

Applying our methodology to three benchmarks reveals several lessons. First and foremost, our work
shows that it is possible to FX quantize all variables including back-propagated gradients even though
their dynamic range is unknown (Köster et al., 2017). Second, we find that the per-layer weight
precision requirements decrease from the input to the output while those of the activation gradients
and weight accumulators increase. Furthermore, the precision requirements for residual networks are
found to be uniform across layers. Finally, hyper-precision reduction techniques such as weight and
activation binarization (Hubara et al., 2016) or gradient ternarization (Wen et al., 2017) are not as
efficient as our methodology since these do not address the fundamental problem of realizing true
fixed-point DNN training.

We demonstrate FX training on three deep learning benchmarks (CIFAR-10, CIFAR-100, SVHN)
achieving high fidelity to our FL baseline in that we observe no loss of accuracy higher then 0.56%
in all of our experiments. Our precision assignment is further shown to be within 1-b per-tensor
of the minimum. We show that our precision assignment methodology reduces representational,
computational, and communication costs of training by up to 6×, 8×, and 4×, respectively, compared
to the FL baseline and related works.

2 PROBLEM SETUP, NOTATION, AND METRICS

We consider a L-layer DNN deployed on a M -class classification task using the setup in Figure 1. We
denote the precision configuration as the L× 5 matrix C = (BWl

, BAl
, B

G
(W )
l

, B
G

(A)
l+1

, B
W

(acc)
l

)Ll=1

whose lth row consists of the precision (in bits) of weight Wl (BWl
), activation Al (BAl

), weight
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gradient G(W )
l (B

G
(W )
l

), activation gradient G(A)
l+1 (B

G
(A)
l+1

), and internal weight accumulator W (acc)
l

(B
W

(acc)
l

) tensors at layer l. This DNN quantization setup is summarized in Appendix A.

2.1 FIXED-POINT CONSTRAINTS & DEFINITIONS

We present definitions/constraints related to fixed-point arithmetic based on the design of fixed-point
adaptive filters and signal processing systems (Parhi, 2007):

• A signed fixed-point scalar a with precision BA and binary representation RA =

(a0, a1, . . . , aBA−1) ∈ {0, 1}BA is equal to: a = rA

(
−a0 +

∑BA−1
i=1 2−iai

)
, where rA is the

predetermined dynamic range (PDR) of a. The PDR is constrained to be a constant power of 2 to
minimize hardware overhead.

• An unsigned fixed-point scalar a with precision BA and binary representation RA =

(a0, a1, . . . , aBA−1) ∈ {0, 1}BA is equal to: a = rA
∑BA−1
i=0 2−iai.

• A fixed-point scalar a is called normalized if rA = 1.
• The precision BA is determined as: BA = log2

rA
∆A

+ 1, where ∆A is the quantization step size
which is the value of the least significant bit (LSB).
• An additive model for quantization is assumed: a = ã + qa, where a is the fixed-point number

obtained by quantizing the floating-point scalar ã, qa is a random variable uniformly distributed
on the interval

[
−∆A

2 , ∆A

2

]
, and the quantization noise variance is V ar(qa) =

∆2
A

12 . The notion of
quantization noise is most useful when there is limited knowledge of the distribution of ã.

• The relative quantization bias ηA is the offset: ηA = |∆A−µA|
µA

, where the first unbiased quanti-
zation level µA = E

[
ã
∣∣ã ∈ I1] and I1 =

[
∆A

2 , 3∆A

2

]
. The notion of quantization bias is useful

when there is some knowledge of the distribution of ã.
• The reflected quantization noise variance from a tensor T to a scalar α = f(T ), for an arbitrary

function f(), is : VT→α = ET→α
∆2

T

12 , where ∆T is the quantization step of T and ET→α is the
quantization noise gain from T to α.

• The clipping rate βT of a tensor T is the probability: βT = Pr ({|t| ≥ rT : t ∈ T}), where rT is
the PDR of T .

2.2 COMPLEXITY METRICS

We use a set of metrics inspired by those introduced by Sakr et al. (2017) which have also been used
by Wu et al. (2018a). These metrics are algorithmic in nature which makes them easily reproducible.

• Representational Cost for weights (CW ) and activations (CA):
CW =

∑L
l=1 |Wl|

(
BWl

+B
G

(W )
l

+B
W

(acc)
l

)
& CA =

∑L
l=1 |Al|

(
BAl

+B
G

(A)
l+1

)
,

which equals the total number of bits needed to represent the weights, weight gradients, and
internal weight accumulators (CW ), and those for activations and activation gradients (CA). 1

• Computational Cost of training: CM =
∑L
l=1 |Al+1|Dl

(
BWl

BAl
+BWl

B
G

(A)
l+1

+BAl
B
G

(A)
l+1

)
,

where Dl is the dimensionality of the dot product needed to compute one output activation at layer
l. This cost is a measure of the number of 1-b full adders (FAs) utilized for all multiplications in
one back-prop iteration. 2

• Communication Cost: CC =
∑L
l=1 |Wl|BG(W )

l

, which represents cost of communicating weight
gradients in a distributed setting (Wen et al., 2017; Alistarh et al., 2017).

1We use the notation |T | to denote the number of elements in tensor T . Unquantized tensors are assumed to
have a 32-b FL representation, which is the single-precision in a GPU.

2 When considering 32-b FL multiplications, we ignore the cost of exponent addition thereby favoring the FL
(conventional) implementation. Boundary effects (in convolutions) are neglected.
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3 PRECISION ASSIGNMENT METHODOLOGY AND ANALYSIS

We aim to obtain a minimal or close-to-minimal precision configuration Co of a FX network such
that the mismatch probability pm = Pr{Ŷfl 6= Ŷfx} between its predicted label (Ŷfx) and that of an
associated FL network (Ŷfl) is bounded, and the convergence behavior of the two networks is similar.

Hence, we require that: (1) all quantization noise sources in the forward path contribute identically to
the mismatch budget pm (Sakr et al., 2017), (2) the gradients be properly clipped in order to limit
the dynamic range (Pascanu et al., 2013), (3) the accumulation of quantization noise bias in the
weight updates be limited (Gupta et al., 2015), (4) the quantization noise in activation gradients be
limited as these are back-propagated to calculate the weight gradients, and (5) the precision of weight
accumulators should be set so as to avoid premature stoppage of convergence (Goel and Shanbhag,
1998). The above insights can be formally described via the following five quantization criteria.
Criterion 1. Equalizing Feedforward Quantization Noise (EFQN) Criterion. The reflected quantiza-
tion noise variances onto the mismatch probability pm from all feedforward weights ({VWl→pm}Ll=1)
and activations ({VAl→pm}Ll=1) should be equal:

VW1→pm = . . . = VWL→pm = VA1→pm = . . . = VAL→pm

Criterion 2. Gradient Clipping (GC) Criterion. The clipping rates of weight ({β
G

(W )
l

}Ll=1) and

activation ({β
G

(A)
l+1

}Ll=1) gradients should be less than a maximum value β0:

β
G

(W )
l

< β0 & β
G

(A)
l+1

< β0 for l = 1 . . . L.

Criterion 3. Relative Quantization Bias (RQB) Criterion. The relative quantization bias of weight
gradients ({η

G
(W )
l

}Ll=1) should be less than a maximum value η0:

η
G

(W )
l

< η0 for l = 1 . . . L.

Criterion 4. Back-propagated Quantization Noise (BQN) Criterion. The reflected quantization noise
variance V

G
(A)
l+1→Σl

, i.e., the total sum of element-wise variances of G(W )
l reflected from quantizing

G
(A)
l+1, should be less than V

G
(W )
l →Σl

:

V
G

(A)
l+1→Σl

≤ V
G

(W )
l →Σl

for l = 1 . . . L.

where Σl is the total sum of element-wise variances of G(W )
l .

Criterion 5. Accumulator Stopping (AS) Criterion. The quantization noise of the internal accumula-
tor should be zero, equivalently:

V
W

(acc)
l →Σ

(acc)
l

= 0 for l = 1 . . . L

where V
W

(acc)
l →Σ

(acc)
l

is the reflected quantization noise variance from W
(acc)
l to Σ

(acc)
l , its total

sum of element-wise variances.

Further explanations and motivations behind the above criteria are presented in Appendix B. The
following claim ensures the satisfiability of the above criteria. This leads to closed form expressions
for the precision requirements we are seeking and completes our methodology. The validity of the
claim is proved in Appendix C.
Claim 1. Satisfiability of Quantization Criteria. The five quantization criteria (EFQN, GC, RQB,
BQN, AS) are satisfied if:

• The precisions BWl
and BAl

are set as follows:

BWl
= rnd

(
log2

(√
EWl→pm
E(min)

))
+B(min) & BAl

= rnd

(
log2

(√
EAl→pm
E(min)

))
+B(min)

(1)

for l = 1 . . . L, where rnd() denotes the rounding operation, EWl→pm andEAl→pm are the weight
and activation quantization noise gains at layer l, respectively, B(min) is a reference minimum
precision, and E(min) = min

(
{EWl→pm}

L
l=1 , {EAl→pm}

L
l=1

)
.
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• The weight and activation gradients PDRs are lower bounded as follows:

r
G

(W )
l

≥ 2σ
(max)

G
(W )
l

& r
G

(A)
l+1

≥ 4σ
(max)

G
(A)
l+1

for l = 1 . . . L (2)

where σ(max)

G
(W )
l

and σ(max)

G
(A)
l+1

are the largest recorded estimates of the weight and activation gradients

standard deviations σ
G

(W )
l

and σ
G

(A)
l+1

, respectively.
• The weight and activation gradients quantization step sizes are upper bounded as follows:

∆
G

(W )
l

<
σ

(min)

G
(W )
l

4
& ∆

G
(A)
l+1

<
∆
G

(W )
l√

λ
(max)

G
(A)
l+1→G

(W )
l


∣∣∣G(W )

l

∣∣∣∣∣∣G(A)
l+1

∣∣∣
1/4

for l = 1 . . . L (3)

where σ(min)

G
(W )
l

is the smallest recorded estimate of σ
G

(W )
l

and λ(max)

G
(A)
l+1→G

(W )
l

is the largest singular

value of the square-Jacobian (Jacobian matrix with squared entries) of G(W )
l with respect to G(A)

l+1.
• The accumulator PDR and step size satisfy:

r
W

(acc)
l

≥ 2−BWl & ∆
W

(acc)
l

< γ(min)∆
G

(W )
l

for l = 1 . . . L (4)

where γ(min) is the smallest value of the learning rate used during training.

Practical considerations: Note that one of the 2L feedforward precisions will equal B(min). The
formulas to compute the quantization noise gains are given in Appendix C and require only one
forward-backward pass on an estimation set. We would like the EFQN criterion to hold upon
convergence; hence, (1) is computed using the converged model from the FL baseline. For backward
signals, setting the values of PDR and LSB is sufficient to determine the precision using the identity
BA = log2

rA
∆A

+ 1, as explained in Section 2.1. As per Claim 1, estimates of the second order
statistics, e.g., σ

G
(W )
l

and σ
G

(A)
l+1

, of the gradient tensors, are required. These are obtained via tensor
spatial averaging, so that one estimate per tensor is required, and updated in a moving window fashion,
as is done for normalization parameters in BatchNorm (Ioffe and Szegedy, 2015). Furthermore, it
might seem that computing the Jacobian in (3) is a difficult task; however, the values of its elements
are already computed by the back-prop algorithm, requiring no additional computations (see Appendix
C). Thus, the Jacobians (at different layers) are also estimated during training. Due to the typical
very large size of modern neural networks, we average the Jacobians spatially, i.e., the activations
are aggregated across channels and mini-batches while weights are aggregated across filters. This is
again inspired by the work on Batch Normalization (Ioffe and Szegedy, 2015) and makes the probed
Jacobians much smaller.

4 NUMERICAL RESULTS

We conduct numerical simulations in order to illustrate the validity of the predicted precision configu-
ration Co and investigate its minimality and benefits. We employ three deep learning benchmarking
datasets: CIFAR-10, CIFAR-100 (Krizhevsky and Hinton, 2009), and SVHN (Netzer et al., 2011).
All experiments were done using a Pascal P100 NVIDIA GPU. We train the following networks:

• CIFAR-10 ConvNet: a 9-layer convolutional neural network trained on the CIFAR-10 dataset
described as 2× (64C3)−MP2− 2× (128C3)−MP2− 2× (256C3)− 2× (512FC)− 10
where C3 denotes 3×3 convolutions, MP2 denotes 2×2 max pooling operation, and FC denotes
fully connected layers.

• SVHN ConvNet: the same network as the CIFAR-10 ConvNet, but trained on the SVHN dataset.
• CIFAR-10 ResNet: a wide deep residual network (Zagoruyko and Komodakis, 2016) with ResNet-

20 architecture but having 8 times as many channels per layer compared to (He et al., 2016).
• CIFAR-100 ResNet: same network as CIFAR-10 ResNet save for the last layer to match the

number of classes (100) in CIFAR-100.

A step by step description of the application of our method to the above four networks is provided in
Appendix E. We hope the inclusion of these steps would: (1) clarify any ambiguity the reader may
have from the previous section and (2) facilitate the reproduction of our results.
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Figure 2: The predicted precision configurations Co for the CIFAR-10 ConvNet (a), SVHN ConvNet (b),
CIFAR-10 ResNet (c), and CIFAR-100 ResNet (d). For each network, the 5-tuple Ĉo represents the average
number of bits per tensor type. For the ResNets, layer depths 21 and 22 correspond to the strided convolutions in
the shortcut connections of residual blocks 4 and 7, respectively. Activation gradients go from layer 2 to L+ 1
and are “shifted to the left” in order to be aligned with the other tensors.

4.1 PRECISION CONFIGURATION Co & CONVERGENCE

The precision configuration Co, with target pm ≤ 1%, β0 ≤ 5%, and η0 ≤ 1%, via our proposed
method is depicted in Figure 2 for each of the four networks considered. We observe that Co is
dependent on the network type. Indeed, the precisions of the two ConvNets follow similar trends as
do those the two ResNets. Furthermore, the following observations are made for the ConvNets:

• weight precision BWl
decreases as depth increases. This is consistent with the observation that

weight perturbations in the earlier layers are the most destructive (Raghu et al., 2017).
• the precisions of activation gradients (B

G
(A)
l

) and internal weight accumulators (B
W

(acc)
l

) increases
as depth increases which we interpret as follows: (1) the back-propagation of gradients is the dual
of the forward-propagation of activations, and (2) accumulators store the most information as their
precision is the highest.

• the precisions of the weight gradients (B
G

(W )
l

) and activations (BAl
) are relatively constant across

layers.

Interestingly, for ResNets, the precision is mostly uniform across the layers. Furthermore, the gap
between B

W
(acc)
l

and the other precisions is not as pronounced as in the case of ConvNets. This
suggests that information is spread equally among all signals which we speculate is due to the shortcut
connections preventing the shattering of information (Balduzzi et al., 2017).

FX training curves in Figure 3 indicate that Co leads to convergence and consistently track FL curves
with close fidelity. This validates our analysis and justifies the choice of Co.
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Figure 3: Convergence curves for the CIFAR-10 ConvNet (a), SVHN ConvNet (b), CIFAR-10 ResNet (c), and
CIFAR-100 ResNet (d) including FL training as well as FX training with precision configurations Co, C1, and
C−1.

4.2 NEAR MINIMALITY OF Co

To determine that Co is a close-to-minimal precision assignment, we compare it with: (a) C+1 =
Co + 1L×5, and (b) C−1 = Co − 1L×5, where 1L×5 is an L× 5 matrix with each entry equal to 13,
i.e., we perturb Co by 1-b in either direction. Figure 3 also contains the convergence curves for the
two new configurations. As shown, C−1 always results in a noticeable gap compared to Co for both
the loss function (except for the CIFAR-10 ResNet) and the test error. Furthermore, C+1 offers no
observable improvements over Co (except for the test error of CIFAR-10 ConvNet). These results
support our contention that Co is close-to-minimal in that increasing the precision above Co leads to
diminishing returns while reducing precision below Co leads to a noticeable degradation in accuracy.
Additional experimental results provided in Appendix D support our contention regarding the near
minimality of Co. Furthermore, by studying the impact of quantizing specific tensors we determine
that that the accuracy is most sensitive to the precision assigned to weights and activation gradients.

4.3 COMPLEXITY VS. ACCURACY

We would like to quantify the reduction in training cost and expense in terms of accuracy resulting
from our proposed method and compare them with those of other methods. Importantly, for a fair
comparison, the same network architecture and training procedure are used. We report CW , CA, CM ,
CC , and test error, for each of the four networks considered for the following training methods:

• baseline FL training and FX training using Co,
• binarized network (BN) training, where feedforward weights and activations are binary (constrained

to ±1) while gradients and accumulators are in floating-point and activation gradients are back-

3PDRs are unchanged across configurations, except for r
W

(acc)
l

as per (4).
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Table 1: Complexity (CW , CA, CM , and CC ) and accuracy (test error) for the floating-point (FL), fixed-point
(FX) with precision configuration Co, binarized network (BN), stochastic quantization (SQ), and TernGrad (TG)
training schemes.

CW

(106b)
CA

(106b)
CM

(109FA)
CC

(106b)
Test
Error

CW

(106b)
CA

(106b)
CM

(109FA)
CC

(106b)
Test
Error

CIFAR-10 ConvNet SVHN ConvNet
FL 148 9.3 94.4 49 12.02% 148 9.3 94.4 49 2.43%

FX (Co) 56.5 1.7 11.9 14 12.58% 54.3 1.9 10.5 14 2.58%
BN 100 4.7 2.8 49 18.50% 100 4.7 2.8 49 3.60%
SQ 78.8 1.7 11.9 14 11.32% 76.3 1.9 10.5 14 2.73%
TG 102 9.3 94.4 3.1 12.49% 102 9.3 94.4 3.1 3.65%

CIFAR-10 ResNet CIFAR-100 ResNet
FL 1784 96 4319 596 7.42% 1789 97 4319 597 28.06%

FX (Co) 726 25 785 216 7.51% 750 25 776 216 27.43%
BN 1208 50 128 596 7.24% 1211 50 128 597 29.35%
SQ 1062 25 785 216 7.42% 1081 25 776 216 28.03%
TG 1227 96 4319 37.3 7.94% 1230 97 4319 37.3 30.62%

propagated via the straight through estimator (Bengio et al., 2013) as was done in (Hubara et al.,
2016),

• fixed-point training with stochastic quantization (SQ). As was done in (Gupta et al., 2015), we
quantize feedforward weights and activations as well as all gradients, but accumulators are kept in
floating-point. The precision configuration (excluding accumulators) is inherited from Co (hence
we determine exactly how much stochastic quantization helps),
• training with ternarized gradients (TG) as was done in TernGrad (Wen et al., 2017). All computa-

tions are done in floating-point but weight gradients are ternarized according to the instantaneous
tensor spatial standard deviations {−2.5σ, 0, 2.5σ} as was suggested by Wen et al. (2017). To
compute costs, we assume all weight gradients use two bits although they are not really fixed-point
and do require computation of 32-b floating-point scalars for every tensor.

The comparison is presented in Table 1. The first observation is a massive complexity reduction
compared to FL. For instance, for the CIFAR-10 ConvNet, the complexity reduction is 2.6× (=
148/56.5), 5.5× (= 9.3/1.7), 7.9× (= 94.4/11.9), and 3.5× (= 49/14) for CW , CA, CM , and CC ,
respectively. Similar trends are observed for the other four networks. Such complexity reduction
comes at the expense of no more than 0.56% increase in test error. For the CIFAR-100 network, the
accuracy when training in fixed-point is even better than that of the baseline.

The representational and communication costs of BN is significantly greater than that of FX because
the gradients and accumulators are kept in full precision, which masks the benefits of binarizing
feedforward tensors. However, benefits are noticeable when considering the computational cost
which is lowest as binarization eliminates multiplications. Furthermore, binarization causes a severe
accuracy drop for the ConvNets but surprisingly not for the ResNets. We speculate that this is due to
the high dimensional geometry of ResNets (Anderson and Berg, 2017).

As for SQ, since Co was inherited, all costs are identical to FX, save for CW which is larger due to
full precision accumulators. Furthermore, SQ has a positive effect only on the CIFAR-10 ConvNet
where it clearly acted as a regularizer.

TG does not provide complexity reductions in terms of representational and computational costs
which is expected as it only compresses weight gradients. Additionally, the resulting accuracy is
slightly worse than that of all other considered schemes, including FX. Naturally, it has the lowest
communication cost as weight gradients are quantized to just 2-b.

5 DISCUSSION

5.1 RELATED WORKS

Many works have addressed the general problem of reduced precision/complexity deep learning.
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Reducing the complexity of inference (forward path): several research efforts have addressed the
problem of realizing a DNN’s inference path in FX. For instance, the works in (Lin et al., 2016;
Sakr et al., 2017) address the problem of precision assignment. While Lin et al. (2016) proposed
a non-uniform precision assignment using the signal-to-quantization-noise ratio (SQNR) metric,
Sakr et al. (2017) analytically quantified the trade-off between activation and weight precisions
while providing minimal precision requirements of the inference path computations that bounds
the probability pm of a mismatch between predicted labels of the FX and its FL counterpart. An
orthogonal approach which can be applied on top of quantization is pruning (Han et al., 2015). While
significant inference efficiency can be achieved, this approach incurs a substantial training overhead.
A subset of the FX training problem was addressed in binary weighted neural networks (Courbariaux
et al., 2015; Rastegari et al., 2016) and fully binarized neural networks (Hubara et al., 2016), where
direct training of neural networks with pre-determined precisions in the inference path was explored
with the feedback path computations being done in 32-b FL.

Reducing the complexity of training (backward path): finite-precision training was explored in
(Gupta et al., 2015) which employed stochastic quantization in order to counter quantization bias
accumulation in the weight updates. This was done by quantizing all tensors to 16-b FX, except for the
internal accumulators which were stored in a 32-b floating-point format. An important distinction our
work makes is the circumvention of the overhead of implementing stochastic quantization (Hubara
et al., 2016). Similarly, DoReFa-Net (Zhou et al., 2016) stores internal weight representations in
32-b FL, but quantizes the remaining tensors more aggressively. Thus arises the need to re-scale and
re-compute in floating-point format, which our work avoids. Finally, Köster et al. (2017) suggests
a new number format – Flexpoint – and were able to train neural networks using slightly 16-b per
tensor element, with 5 shared exponent bits and a per-tensor dynamic range tracking algorithm.
Such tracking causes a hardware overhead bypassed by our work since the arithmetic is purely FX.
Augmenting Flexpoint with stochastic quantization effectively results in WAGE (Wu et al., 2018b),
and enables integer quantization of each tensor.

As seen above, none of the prior works address the problem of predicting precision requirements of
all training signals. Furthermore, the choice of precision is made in an ad-hoc manner. In contrast, we
propose a systematic methodology to determine close-to-minimal precision requirements for FX-only
training of deep neural networks.

5.2 CONCLUSION

In this paper, we have presented a study of precision requirements in a typical back-propagation
based training procedure of neural networks. Using a set of quantization criteria, we have presented
a precision assignment methodology for which FX training is made statistically similar to the FL
baseline, known to converge a priori. We realized FX training of four networks on the CIFAR-10,
CIFAR-100, and SVHN datasets and quantified the associated complexity reduction gains in terms
costs of training. We also showed that our precision assignment is nearly minimal.

The presented work relies on the statistics of all tensors being quantized during training. This
necessitates an initial baseline run in floating-point which can be costly. An open problem is
to predict a suitable precision configuration by only observing the data statistics and the network
architecture. Future work can leverage the analysis presented in this paper to enhance the effectiveness
of other network complexity reduction approaches. For instance, weight pruning can be viewed as a
coarse quantization process (quantize to zero) and thus can potentially be done in a targeted manner
by leveraging the information provided by noise gains. Furthermore, parameter sharing and clustering
can be viewed as a form of vector quantization which presents yet another opportunity to leverage
our method for complexity reduction.
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Supplementary Material

A SUMMARY OF QUANTIZATION SETUP

The quantization setup depicted in Figure 1 is summarized as follows:

• Feedforward computation at layer l:

Al+1 = fl(Al,Wl)

where fl() is the function implemented at layer l, Al (Al+1) is the activation tensor at layer l
(l+ 1) quantized to a normalized unsigned fixed-point format with precision BAl

(BAl+1
), and Wl

is the weight tensor at layer l quantized to a normalized signed fixed-point format with precision
BWl

. We further assume the use of a ReLU-like activation function with a clipping level of 2 and a
max-norm constraint on the weights which are clipped between [−1, 1] at every iteration.

• Back-propagation of activation gradients at layer l:

G
(A)
l = g

(A)
l (Wl, G

(A)
l+1)

where gl()(A) is the function that back-propagates the activation gradients at layer l, G(A)
l (G(A)

l+1)
is the activation gradient tensor at layer l (l + 1) quantized to a signed fixed-point format with
precision B

G
(A)
l

(B
G

(A)
l+1

).

• Back-propagation of weight gradient tensor G(W )
l at layer l:

G
(W )
l = g

(W )
l (Al, G

(A)
l+1)

where g(W )
l () is the function that back-propagates the weight gradients at layer l, and G(W )

l is
quantized to a signed fixed-point format with precision B

G
(W )
l

.
• Internal weight accumulator update at layer l:

W
(acc)
l = U(W

(acc)
l , G

(W )
l , γ)

where U() is the update function, γ is the learning rate, and W (acc)
l is the internal weight accumu-

lator tensor at layer l quantized to signed fixed-point with precision B
W

(acc)
l

. Note that, for the

next iteration, Wl is directly obtained from W
(acc)
l via quantization to BWl

bits.

12



Published as a conference paper at ICLR 2019

B FURTHER EXPLANATIONS AND MOTIVATIONS BEHIND QUANTIZATION
CRITERIA

Criterion 1 (EFQN) is used to ensure that all feedforward quantization noise sources contribute
equally to the pm budget. Indeed, if one of the 2L reflected quantization noise variances from the
feedforward tensors onto pm, say VWi→pm for i ∈ {1, . . . , L}, largely dominates all others, it would
imply that all tensors but Wi are overly quantized. It would therefore be necessary to either increase
the precision of Wi or decrease the precisions of all other tensors. The application of Criterion 1
(EFQN) through the closed form expression (1) in Claim 1 solves this issue avoiding the need for a
trial-and-error approach.

Because FX numbers require a constant PDR, clipping of gradients is needed since their dynamic
range is arbitrary. Ideally, a very small PDR would be preferred in order to obtain quantization steps
of small magnitude, and hence less quantization noise. We can draw parallels from signal processing
theory, where it is known that for a given quantizer, the signal-to-quantization-noise ratio (SQNR) is
equal to SQNR(dB) = 6B+ 4.78−PAR where PAR is the peak-to-average ratio, proportional to
the PDR. Thus, we would like to reduce the PDR as much as possible in order to increase the SQNR
for a given precision. However, this comes at the risk of overflows (due to clipping). Criterion 2
(GC) addresses this trade-off between quantization noise and overflow errors.

Since the back-propagation training procedure is an iterative one, it is important to ensure that any
form of bias does not corrupt the weight update accumulation in a positive feedback manner. FX
quantization, being a uniform one, is likely to induce such bias when quantized quantities, most
notable gradients, are not uniformly distributed. Criterion 3 (RQB) addresses this issue by using η
as proxy to this bias accumulation a function of quantization step size and ensuring that its worst case
value is small in magnitude.

Criterion 4 (BQN) is in fact an extension of Criterion 1 (EFQN), but for the back-propagation phase.
Indeed, once the precision (and hence quantization noise) of weight gradients is set as per Criterion
3 (RQB), it is needed to ensure that the quantization noise source at the activation gradients would
not contribute more noise to the updates. This criterion sets the quantization step of the activation
gradients.

Criterion 5 (AS) ties together feedforward and gradient precisions through the weight accumulators.
It is required to increment/decrement the feedforward weights whenever the accumulated updates
cross-over the weight quantization threshold. This is used to set the PDR of the weight accumulators.
Furthermore, since the precision of weight gradients has already been designed to account for
quantization noise (through Criteria 2-4), the criterion requires that the accumulators do not cause
additional noise.

13



Published as a conference paper at ICLR 2019

C PROOF OF CLAIM 1

The validity of Claim 1 is derived from the following five lemmas. Note that each lemma addresses
the satisfiability of one of the five quantization criteria presented in the main text and corresponds to
part of Claim 1.
Lemma 1. The EFQN criterion holds if the precisions BWl

and BAl
are set as follows:

BWl
= rnd

(
log2

(√
EWl→pm
E(min)

))
+B(min) & BAl

= rnd

(
log2

(√
EAl→pm
E(min)

))
+B(min)

for l = 1 . . . L, where rnd() denotes the rounding operation,B(min) is a reference minimum precision,
and E(min) is given by:

E(min) = min
(
{EWl→pm}

L
l=1 , {EAl→pm}

L
l=1

)
. (5)

Proof. By definition of the reflected quantization noise variance, the EFQN, by definition, is satisfied
if:

∆2
W1

12
EW1→pm = . . . =

∆2
WL

12
EWL→pm =

∆2
A1

12
EA1→pm = . . . =

∆2
AL

12
EAL→pm ,

where the quantization noise gains are given by:

EWl→pm = E


M∑
i=1
i6=Ŷfl

∑
w∈Wl

∣∣∣∣∂(Zi−ZŶfl
)

∂w

∣∣∣∣2
2|Zi − ZŶfl

|2

 & EAl→pm = E


M∑
i=1
i 6=Ŷfl

∑
a∈Al

∣∣∣∣∂(Zi−ZŶfl
)

∂a

∣∣∣∣2
2|Zi − ZŶfl

|2


(6)

for l = 1 . . . L, where {Zi}Mi=1 are the soft outputs and ZŶfl
is the soft output corresponding to Ŷfl.

The expressions for these quantization gains are obtained by linearly expanding (across layers) those
used in (Sakr et al., 2017). Note that a second order upper bound is used as a surrogate expression for
pm.

From the definition of quantization step size, the above is equivalent to:

2−2BW1EW1→pm = . . . = 2−2BWLEWL→pm = 2−2BA1EA1→pm = . . . = 2−2BALEAL→pm .

Let E(min) be as defined in (5):

E(min) = min
(
{EWl→pm}

L
l=1 , {EAl→pm}

L
l=1

)
.

We can divide each term by E(min):

2−2BW1
EW1→pm
E(min)

= . . . = 2−2BWL
EWL→pm
E(min)

= 2−2BA1
EA1→pm
E(min)

= . . . = 2−2BAL
EAL→pm
E(min)

where each term is positive, so that we can take square roots and logarithms such that:

BW1
− log2

(√
EW1→pm
E(min)

)
= . . . = BWL

− log2

(√
EWL→pm
E(min)

)

=BA1
− log2

(√
EA1→pm
E(min)

)
= . . . = BAL

− log2

(√
EAL→pm
E(min)

)
Thus we equate all of the above to a reference precision B(min) yielding:

BWl
= log2

(√
EWl→pm
E(min)

)
+B(min) & BAl

= log2

(√
EAl→pm
E(min)

)
+B(min)

for l = 1 . . . L. Note that because E(min) is the least quantization noise gain, it is equal to one of
the above quantization noise gains so that the corresponding precision actually equates B(min). As
precisions must be integer valued, each of B(min), {BWl

}Ll=1, and {BAl
}Ll=1 have to be integers, and

thus a rounding operation is to be applied on all logarithm terms. Doing so results in (1) from Lemma
1 which completes this proof.
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Lemma 2. The GC criterion holds for β0 = 5% provided the weight and activation gradients
pre-defined dynamic ranges (PDRs) are lower bounded as follows:

r
G

(W )
l

≥ 2σ
(max)

G
(W )
l

& r
G

(A)
l+1

≥ 4σ
(max)

G
(A)
l+1

for l = 1 . . . L

where σ(max)

G
(W )
l

and σ
(max)

G
(A)
l+1

are the largest ever recorded estimates of the weight and activation

gradients standard deviations σ
G

(W )
l

and σ
G

(A)
l+1

, respectively.

Proof. Let us consider the case of weight gradients. The GC criterion, by definition requires:

β
G

(W )
l

= Pr
({
|g| ≥ r

G
(W )
l

: g ∈ G(W )
l

})
< 0.05

Typically, weight gradients are obtained by computing the derivatives of a loss function with respect
to a mini-batch. By linearity of derivatives, weight gradients are themselves averages of instantaneous
derivatives and are hence expected to follow a Gaussian distribution by application of the Central
Limit Theorem. Furthermore, the gradient mean was estimated during baseline training and was
found to oscillate around zero.

Thus

β
G

(W )
l

= 2Q

(
r
G

(W )
l

σ
G

(W )
l

)
where we used the fact that a Gaussian distribution is symmetric andQ() is the elementary Q-function,
which is a decreasing function. Thus, in the worst case, we have:

β
G

(W )
l

≤ 2Q

 r
G

(W )
l

σ
(max)

G
(W )
l

 .

Hence, for a PDR as suggested by the lower bound in (2):

r
G

(W )
l

≥ 2σ
(max)

G
(W )
l

in Lemma 2, we obtain the upper bound:

β
G

(W )
l

≤ 2Q(2) = 0.044 < 0.05

which means the GC criterion holds and completes the proof.

For activation gradients, the same reasoning applies, but the choice of a larger PDR in (2):

r
G

(A)
l+1

≥ 4σ
(max)

G
(A)
l+1

than for weight gradients is due to the fact that the true dynamic range of the activation gradients is
larger than the value indicated by the second moment. This stems from the use of activation functions
such as ReLU which make the activation gradients sparse. We also recommend increasing the PDR
even more when using regularizers that sparsify gradients such as Dropout (Srivastava et al., 2014) or
Maxout (Goodfellow et al., 2013).

Lemma 3. The RQB criterion holds for η0 = 1% provided the weight gradient quantization step
size is upper bounded as follows:

∆
G

(W )
l

<
σ

(min)

G
(W )
l

4
for l = 1 . . . L

where σ(min)

G
(W )
l

is the smallest ever recorded estimate of σ
G

(W )
l

.
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Proof. For the Gaussian distributed (see proof of Lemma 2) weight gradient at layer l, the true mean
conditioned on the first non-zero quantization region is given by:

µ
G

(W )
l

=

∫ 3∆
G

(W )
l
2

∆
G

(W )
l
2

x exp

(
− x2

2σ2

G
(W )
l

)
dx(

Q

(
∆

G
(W )
l

2σ
G

(W )
l

)
−Q

(
3∆

G
(W )
l

2σ
G

(W )
l

))√
2πσ2

G
(W )
l

=

σ
G

(W )
l

(
exp

(
−

∆2

G
(W )
l

8σ2

G
(W )
l

)
− exp

(
−

9∆2

G
(W )
l

8σ2

G
(W )
l

))
(
Q

(
∆

G
(W )
l

2σ
G

(W )
l

)
−Q

(
3∆

G
(W )
l

2σ
G

(W )
l

))√
2π

,

where σ
G

(W )
l

is the standard deviation of G(W )
l . By substituting ∆

G
(W )
l

=
σ
G

(W )
l

4 into the above
expression of µ

G
(W )
l

and plugging in the definition of relative quantization bias, we obtain:

η
G

(W )
l

=

∣∣∣∆G
(W )
l

− µ
G

(W )
l

∣∣∣
µ
G

(W )
l

= 0.4% < 1%.

Hence, this choice of the quantization step satisfies the RQB. In order to ensure the RQB holds
throughout training, σ(min)

G
(W )
l

is used in Lemma 3. This completes the proof.

Lemma 4. The BQN criterion holds provided the activation gradient quantization step size is upper
bounded as follows:

∆
G

(A)
l+1

<
∆
G

(W )
l√

λ
(max)

G
(A)
l+1→G

(W )
l


∣∣∣G(W )

l

∣∣∣∣∣∣G(A)
l+1

∣∣∣
1/4

for l = 1 . . . L

where λ(max)

G
(A)
l+1→G

(W )
l

, the largest singular value of the square-Jacobian (Jacobian matrix with squared

entries) of G(W )
l with respect to G(A)

l+1.

Proof. Let us unrollG(W )
l andG(A)

l+1 to vectors of size
∣∣∣G(W )

l

∣∣∣ and
∣∣∣G(A)

l+1

∣∣∣, respectively. The element-

wise quantization noise variance of each weight gradient is
∆2

G
(W )
l

12 . Therefore we have:

VG(W )→Σl
=
∣∣∣G(W )

l

∣∣∣ ∆2

G
(W )
l

12
.

The reflected quantization noise variance from an activation gradient ga ∈ G
(A)
l+1 onto a weight

gradient gw ∈ G(W )
l is ∣∣∣∣∂gw∂ga

∣∣∣∣2 ∆2

G
(A)
l+1

12
,

where cross products of quantization noise are neglected (Sakr et al., 2017). Hence, the reflected
quantization noise variance element-wise from G

(A)
l+1 onto G(W )

l is given by:

∆2

G
(A)
l+1

12
J
G

(A)
l+1→G

(W )
l

1∣∣∣G(A)
l+1

∣∣∣,
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where J
G

(A)
l+1→G

(W )
l

is the square-Jacobian of G(W )
l with respect to G(A)

l+1 and 1 denotes the all one
vector with size denoted by its subscript. Hence, we have:

V
G

(A)
l+1→Σl

=

∆2

G
(A)
l+1

12

(
J
G

(A)
l+1→G

(W )
l

1∣∣∣G(A)
l+1

∣∣∣
)T

1∣∣∣G(W )
l

∣∣∣
≤

∆2

G
(A)
l

12

∥∥∥∥JG(A)
l+1→G

(W )
l

1∣∣∣G(A)
l+1

∣∣∣
∥∥∥∥∥∥∥∥1∣∣∣G(W )

l

∣∣∣
∥∥∥∥

≤
√∣∣∣G(W )

l

∣∣∣∆2

G
(A)
l+1

12

∥∥∥JG(A)
l+1→G

(W )
l

∥∥∥∥∥∥∥1∣∣∣G(A)
l+1

∣∣∣
∥∥∥∥

≤ λ(max)

G
(A)
l+1→G

(W )
l

√∣∣∣G(A)
l+1

∣∣∣ ∣∣∣G(W )
l

∣∣∣∆2

G
(A)
l+1

12
,

where we used the Cauchy-Schwarz inequality and the spectral norm of a matrix. Next we set this
upper bound on V

G
(A)
l+1→Σl

to be less than the value of V
G

(W )
l →Σl

determined above. This condition,
by definition, is enough to satisfy the BQN criterion. Rearranging terms yields Lemma 4 which
completes the proof.

In the main text, it was menitoned that each entry in the Jacobian matrix above is already computed by
the back-propagation algorithm. We now explain how. Let us denote the instantaneous loss function

being minimized by ξ. Note that each entry of J
G

(A)
l+1→G

(W )
l

is of the form
∣∣∣ ∂gw
∂g

(0)
a

∣∣∣2 where gw = ∂ξ
∂w

with w ∈ Wl and g(0)
a = ∂ξ

∂a(0) with a(0) ∈ Al+1. The back-propagation algorithm computes gw
using the chain rule as follows:

gw =
∂ξ

∂w
=

∑
a(i)∈Al+1

∂ξ

∂a(i)

∂a(i)

∂w
.

In particular, note that g(0)
a appears only once in the summation above and is multiplied by ∂a(0)

∂w .

Thus ∂gw

∂g
(0)
a

= ∂a(0)

∂w . This establishes that each entry of the Jacobian matrix is already computed via
the back-propagation algorithm.

Lemma 5. The AS criterion holds provided the accumulator PDR and quantization step size satisfy:

r
W

(acc)
l

≥ 2−BWl & ∆
W

(acc)
l

< γ(min)∆
G

(W )
l

for l = 1 . . . L

where γ(min) is the smallest value of the learning rate used during training.

Proof. The lower bound on the PDR of the weight accumulator, given by

r
W

(acc)
l

≥ 2−BWl

for l = 1 . . . L, ensures that updates are able to cross over the feedforward weight quantization
threshold so that it can be updated. Additionally, the lower bound on the quantization step size, given
by

∆
W

(acc)
l

< γ(min)∆
G

(W )
l

for l = 1 . . . L, simply ensures that the internal weight accumulator overlaps with the least significant
part of the representation of the weight gradient multiplied by the learning rate. Thus, the quantization
noise of the internal accumulator is zero, or equivalently,

V
W

(acc)
l →Σ

(acc)
l

= 0 for l = 1 . . . L

which, by definition, is enough for the AS criterion to hold. Note that this criterion applies to the
Vanilla-SGD learning rule (which was used in our experiments). Future work includes extending this
criterion to other learning rules such as momentum and ADAM.
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We close this appendix by discussing the approximation made by invoking the Central Limit Theorem
(CLT) in the proofs of Lemmas 2 & 3. This approximation was made because, typically, a back-
propagation iteration computes gradients of a loss function being averaged over a mini-batch of
samples. By linearity of derivatives, the gradients themselves are averages, which warrants the
invocation of the CLT. However, the CLT is an asymptotic result which might be imprecise for a finite
number of samples. In typical training of neural networks, the number of samples, or mini-batch size,
is in the range of hundreds or thousands (Goyal et al., 2017). It is therefore important to quantify
the preciseness, or lack thereof, of the CLT approximation. On way to do so is via the Berry-Essen
Theorem which considers the average of n independent, identically distributed random variables with
finite absolute third moment ρ and standard deviation σ. The worst case deviation of the cumulative
distribution of the true average from the of the approximated Gaussian random variable (via the CLT),
also known as the Kolmogorov-Smirnov distance, KS, is upper bounded as follows: KS < Cρ√

nσ3 ,

where C < 0.4785 (Tyurin, 2010). Observe that the quantity ρ
σ3 is data dependent. To estimate this

quantity, we performed a forward-backward pass for all training samples at the start of each epoch
for our four networks considered. The statistics ρ and σ were estimated by spatial (over tensors)
and sample (over training samples) averages. The maximum value of the ratio ρ

σ3 for all gradient
tensors was found to be 2.8097. The mini-batch size we used in all our experiments was 256. Hence,
we claim that the CLT approximation in Lemmas 2 & 3 is valid in our context up to a worst case
Kolmogorov-Smirnov distance of KS < 0.4785×2.8097√

256
= 0.084.
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Figure 4: Additional experiments on minimality and sensitivity of Co: relative test error deviation
with respect to Co as a function of (a) random fractional precision perturbations, and (b) 1-b precision
reduction per tensor type.

D ADDITIONAL RESULTS ON THE MINIMALITY AND SENSITIVITY OF Co

The minimality experiments in the main paper only consider a full 1-b perturbation to the full
precision configuration matrix. We further investigate the minimality of Co and its sensitivity to
precision perturbation per tenor type. The results of this investigation are presented in Fig. 4.

First, we consider random fractional precision perturbations, meaning perturbations to the precision
configuration matrix where only a random fraction p of the 5L precision assignments is incremented
or decremented. A fractional precision perturbation of 1 (-1) corresponds to C+1 (C−1). A fractional
precision perturbation of 0.5 (-0.5) means that a randomly chosen half of the precision assignments is
incremented (decremented). Figure 4 (a) shows the relative test error deviation compared to the test
error associated with Co for various fractional precision perturbations. The error deviation is taken in
a relative fashion to account for the variability of the different networks’ accuracies. For instance, an
absolute 1% difference in accuracy on a network trained on SVHN is significantly more severe than
one on a network trained on CIFAR-100. It is observed that for negative precision perturbations the
variation in test error is more important than for the case of positive perturbations. This is further
encouraging evidence that Co is nearly minimal, in that a negative perturbation causes significant
accuracy degradation while a positive one offers diminishing returns.

It is also interesting to study which of the 5L tensor types is most sensitive to precision reduction.
To do so, we perform a similar experiment whereby we selectively decrement the precision of all
tensors belonging to the same type (weights, activations, weight gradients, activation gradients,
weight accumulators). The results of this experiment are found in Fig. 4 (b). It is found that the
most sensitive tensor types are weights and activation gradients while the least sensitive ones are
activations and weight gradients. This is an interesting finding raising further evidence that there
exists some form of duality between the forward propagation of activations and back propagation of
derivatives as far as numerical precision is concerned.
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E ILLUSTRATION OF METHODOLOGY USAGE

We illustrate a step by step description of the application of our precision assignment methodology to
the four networks we report results on.

E.1 CIFAR-10 CONVNET

Feedforward Precisions: The first step in our methodology consists of setting the feedforward
precisions BWl

and BAl
. As per Claim 1, this requires using (1). To do so, it is first needed to

compute the quantization noise gains using (6). Using the converged weights from the baseline run
we obtain:

Layer Index l 1 2 3 4 5
EWl→pm 1.52E+06 1.24E+06 4.21E+06 3.57E+06 2.35E+06
EAl→pm 5.51E+04 3.27E+02 5.15E+02 6.60E+02 7.78E+02

Layer Index l 6 7 8 9
EWl→pm 5.61E+05 5.97E+04 3.23E+04 8.66E+03
EAl→pm 7.49E+02 6.32E+02 2.37E+02 9.47E+01

And therefore, E(min) = 94.7 and the feedforward precisions should be set according to (1) as
follows:

Layer Index l 1 2 3 4 5
BWl

7+B(min) 7+B(min) 8+B(min) 8+B(min) 7+B(min)

BAl
4+B(min) 1+B(min) 1+B(min) 1+B(min) 2+B(min)

Layer Index l 6 7 8 9
BWl

6+B(min) 5+B(min) 4+B(min) 3+B(min)

BAl
1+B(min) 1+B(min) 1+B(min) 0+B(min)

The value of B(min) is swept and pm i evaluated on the validation set. It is found that the smallest
value of B(min) resulting in pm < 1% is equal to 4 bits. Hence the feedforward precisions are set as
follows and as illustrated in Figure 2:

Layer Index l 1 2 3 4 5 6 7 8 9
BWl

11 11 12 12 11 10 9 8 7
BAl

8 5 5 5 6 5 5 5 4

Gradient Precisions: The second step of the methodology is to determine the precisions of weight
B
G

(W )
l

and activation B
G

(A)
l+1

gradients. As per Claim 1, an important statistic is the spatial variance
of the gradient tensors. We estimate these variances via moving window averages, where at each
iteration, the running variance estimate σ̂2 is updated using the instantaneous variance σ̃2 as follows:

σ̂2 ← (1− θ)σ̂2 + θσ̃2

where θ is the running average factor, chosen to be 0.1. The running variance estimate of each
gradient tensor is dumped every epoch. Using the maximum recorded estimate and (2) we compute
the PDRs of the gradient tensors (as a reminder, the PDR is forced to be a power of 2):

Layer Index l 1 2 3 4 5
r
G

(W )
l

5.00E-01 1.25E-01 1.25E-01 1.25E-01 6.25E-02
r
G

(A)
l+1

4.88E-04 9.77E-04 9.77E-04 1.95E-03 7.81E-03

Layer Index l 6 7 8 9
r
G

(W )
l

3.13E-02 3.13E-02 1.56E-02 1.25E-01
r
G

(A)
l+1

1.56E-02 7.81E-03 7.81E-03 3.13E-02

Furthermore, using the minimum recorded estimates of the weight gradient spatial variances and (3)
we compute the values of the quantization step sizes of the weight tensors:
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Layer Index l 1 2 3 4 5
∆
G

(W )
l

3.91E-03 1.95E-03 9.77E-04 9.77E-04 4.88E-04

Layer Index l 6 7 8 9
∆
G

(W )
l

2.44E-04 2.44E-04 1.22E-04 4.88E-04

Hence the weight gradients precisions B
G

(W )
l

are set as follows and as illustrated in Figure 2:

Layer Index l 1 2 3 4 5 6 7 8 9
B
G

(W )
l

9 9 9 9 9 9 9 9 10

In order to compute the activation gradients precisions, (3) dictates that we need the values of largest
singular values of the of the square-Jacobians of G(W )

l with respect to G(A)
l+1 for l = 1 . . . L. The

square Jacobians matrices are estimated in a moving window fashion as for the variances above.
However, instead of updating a matrix every iteration, the updates are done every first batch of every
epoch. The following are the maximum recorded singluar values:

Layer Index l 1 2 3 4 5
λ

(max)

G
(A)
l+1→G

(W )
l

1.44E+02 2.37E+02 4.28E+02 2.03E+02 4.20E+01

Layer Index l 6 7 8 9
λ

(max)

G
(A)
l+1→G

(W )
l

9.08E+00 1.37E+01 1.26E+01 3.51E+00

Using the above values and (3) we obtain the values of the quantization step sizes for the activation
gradients:

Layer Index l 1 2 3 4 5
∆
G

(A)
l+1

6.10E-05 3.05E-05 7.63E-06 1.53E-05 1.53E-05

Layer Index l 6 7 8 9
∆
G

(A)
l+1

1.53E-05 1.53E-05 7.63E-06 6.10E-05

Hence the activation gradients precisions B
G

(A)
l+1

are set as follows and as illustrated in Figure 2:

Layer Index l 1 2 3 4 5 6 7 8 9
B
G

(A)
l+1

5 8 9 9 11 12 11 11 11

Internal Weight Accumulators Precisions: By application of (4), we use the above results to obtain
the internal weight accumulator precisions. The only additional information needed is the value of the
smallest learning rate value used in the training, which in our case is 0.0001. We obtain the following
precisions which are illustrated in Figure 2

Layer Index l 1 2 3 4 5 6 7 8 9
B
W

(Acc)
l

13 15 14 14 16 18 19 21 20

E.2 SVHN CONVNET

Feedforward Precisions: The quantization noise gains are used to obtain values for the precisions
as a function of B(min) as summarized below:
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Layer Index l 1 2 3 4 5
EWl→pm 3.07E+03 4.50E+02 1.54E+03 1.79E+03 6.01E+03
BWl

6+B(min) 5+B(min) 6+B(min) 6+B(min) 7+B(min)

EAl→pm 7.58E+02 2.86E+00 7.09E+00 2.55E+00 8.33E+00
BAl

5+B(min) 1+B(min) 2+B(min) 1+B(min) 2+B(min)

Layer Index l 6 7 8 9
EWl→pm 1.25E+03 7.91E+01 1.20E+01 9.13E+00
BWl

6+B(min) 4+B(min) 2+B(min) 2+B(min)

EAl→pm 8.18E+00 1.78E+01 1.14E+00 3.90E-01
BAl

2+B(min) 3+B(min) 1+B(min) 0+B(min)

The value of B(min) is again swept, and it is found that the pm < 1% for B(min) = 3. The
feedforward precisions are therefore set as follows and as illustrated in Figure 2:

Layer Index l 1 2 3 4 5 6 7 8 9
BWl

9 8 9 9 10 9 7 5 5
BAl

8 4 5 4 6 6 7 4 3

Gradient Precisions: The spatial variance of the gradient tensors is used to determine the PDRs
and the quantization step sizes of weight gradients. The singular values of the square-Jacobians
are needed to determine the quantization step sizes of activation gradients. They were computed as
follows:

Layer Index l 1 2 3 4 5
r
G

(W )
l

6.25E-02 1.56E-02 1.56E-02 1.56E-02 1.56E-02
∆
G

(W )
l

2.44E-04 6.10E-05 6.10E-05 6.10E-05 6.10E-05
r
G

(A)
l+1

4.88E-04 4.88E-04 9.77E-04 1.95E-03 3.91E-03

λ
(max)

G
(A)
l+1→G

(W )
l

5.13E+00 1.48E+02 3.25E+02 1.37E+02 8.84E+01

∆
G

(A)
l+1

3.05E-05 9.54E-07 9.54E-07 9.54E-07 1.91E-06

Layer Index l 6 7 8 9
r
G

(W )
l

7.81E-03 3.91E-03 3.91E-03 1.56E-02
∆
G

(W )
l

3.05E-05 1.53E-05 7.63E-06 6.10E-05
r
G

(A)
l+1

1.56E-02 3.91E-03 3.91E-03 3.13E-02

λ
(max)

G
(A)
l+1→G

(W )
l

2.20E+01 9.58E+00 1.78E+00 1.71E+00

∆
G

(A)
l+1

1.91E-06 9.54E-07 9.54E-07 7.63E-06

Hence the gradients precisions are set as follows and as illustrated in Figure 2:

Layer Index l 1 2 3 4 5 6 7 8 9
B
G

(W )
l

9 9 9 9 9 9 9 10 9
B
G

(A)
l+1

5 10 11 12 12 14 13 13 13

Internal Weight Accumulators Precisions: The smallest learning rate value for this network is
0.001 which results in the following precisions for the internal weight accumulators as illustrated in
Figure 2:

Layer Index l 1 2 3 4 5 6 7 8 9
B
W

(Acc)
l

14 17 16 16 15 17 20 23 20

E.3 CIFAR-10 RESNET

Feedforward Precisions: The quantization noise gains are used to obtain values for the precisions
as a function of B(min) as summarized below:
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Layer Index l 1 2 3 4 5 6
EWl→pm 2.41E+03 9.80E+02 1.22E+03 1.62E+03 1.52E+03 3.05E+03
BWl

11+B(min) 10+B(min) 10+B(min) 10+B(min) 10+B(min) 11+B(min)

EAl→pm 7.32E-01 5.15E-01 1.29E-01 1.12E-01 7.31E-02 8.98E-02
BAl

5+B(min) 5+B(min) 4+B(min) 4+B(min) 3+B(min) 3+B(min)

Layer Index l 7 8 9 10 11 12
EWl→pm 1.47E+03 2.15E+03 2.74E+03 4.96E+03 4.23E+03 4.20E+03
BWl

10+B(min) 11+B(min) 11+B(min) 11+B(min) 11+B(min) 12+B(min)

EAl→pm 7.70E-02 8.39E-02 6.38E-02 1.92E-01 1.54E-01 1.33E-01
BAl

3+B(min) 3+B(min) 3+B(min) 4+B(min) 4+B(min) 4+B(min)

Layer Index l 13 14 15 16 17 18
EWl→pm 7.25E+03 2.99E+03 2.86E+03 3.00E+03 5.02E+03 4.34E+03
BWl

11+B(min) 11+B(min) 11+B(min) 11+B(min) 10+B(min) 10+B(min)

EAl→pm 1.13E-01 8.51E-02 6.57E-02 1.29E-01 6.51E-02 2.16E-02
BAl

4+B(min) 3+B(min) 3+B(min) 4+B(min) 3+B(min) 2+B(min)

Layer Index l 19 20 21 22
EWl→pm 1.41E+03 1.30E+03 1.08E+02 8.31E+00
BWl

9+B(min) 7+B(min) 11+B(min) 11+B(min)

EAl→pm 4.80E-03 7.82E-04
BAl

1+B(min) 0+B(min)

Note that for weights, layer depths 21 and 22 correspond to the strided convolutions in the shortcut
connections of residual blocks 4 and 7, respectively. The value of B(min) is again swept, and it is
found that the pm < 1% for B(min) = 3. The feedforward precisions are therefore set as follows and
as illustrated in Figure 2:

Layer Index l 1 2 3 4 5 6 7 8 9 10 11
BWl

14 13 13 13 13 14 13 14 14 14 14
BAl

8 8 7 7 6 6 6 6 6 7 7
Layer Index l 12 13 14 15 16 17 18 19 20 21 22

BWl
15 14 14 14 14 13 13 12 10 14 14

BAl
7 7 6 6 7 6 5 4 3

Gradient Precisions: The spatial variance of the gradient tensors is used to determine the PDRs
and the quantization step sizes of weight gradients. The singular values of the square-Jacobians
are needed to determine the quantization step sizes of activation gradients. They were computed as
follows:
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Layer Index l 1 2 3 4 5 6
r
G

(W )
l

2.50E-01 6.25E-02 6.25E-02 3.13E-02 3.13E-02 3.13E-02
∆
G

(W )
l

2.44E-04 3.05E-05 3.05E-05 3.05E-05 3.05E-05 3.05E-05
r
G

(A)
l+1

4.88E-04 2.44E-04 2.44E-04 2.44E-04 2.44E-04 2.44E-04

λ
(max)

G
(A)
l+1→G

(W )
l

8.07E+02 2.84E+03 2.84E+03 5.43E+03 5.43E+03 4.94E+03

∆
G

(A)
l+1

7.63E-06 4.77E-07 4.77E-07 2.38E-07 2.38E-07 2.38E-07

Layer Index l 7 8 9 10 11 12
r
G

(W )
l

3.13E-02 3.13E-02 3.13E-02 3.13E-02 3.13E-02 3.13E-02
∆
G

(W )
l

3.05E-05 3.05E-05 3.05E-05 3.05E-05 3.05E-05 3.05E-05
r
G

(A)
l+1

2.44E-04 2.44E-04 4.88E-04 4.88E-04 2.44E-04 2.44E-04

λ
(max)

G
(A)
l+1→G

(W )
l

4.94E+03 1.22E+03 1.22E+03 1.08E+03 1.08E+03 8.07E+02

∆
G

(A)
l+1

2.38E-07 4.77E-07 4.77E-07 4.77E-07 4.77E-07 9.54E-07

Layer Index l 13 14 15 16 17 18
r
G

(W )
l

3.13E-02 3.13E-02 1.56E-02 1.56E-02 1.56E-02 1.56E-02
∆
G

(W )
l

3.05E-05 3.05E-05 1.53E-05 1.53E-05 1.53E-05 1.53E-05
r
G

(A)
l+1

2.44E-04 4.88E-04 4.88E-04 4.88E-04 2.44E-04 2.44E-04

λ
(max)

G
(A)
l+1→G

(W )
l

8.07E+02 1.93E+02 1.93E+02 2.98E+02 2.98E+02 3.01E+02

∆
G

(A)
l+1

9.54E-07 9.54E-07 9.54E-07 4.77E-07 2.38E-07 2.38E-07

Layer Index l 19 20 21 22
r
G

(W )
l

1.56E-02 1.56E-02 1.56E-02 2.50E-01
∆
G

(W )
l

7.63E-06 7.63E-06 1.91E-06 3.05E-05
r
G

(A)
l+1

2.44E-04 6.25E-02

λ
(max)

G
(A)
l+1→G

(W )
l

3.01E+02 2.32E+01

∆
G

(A)
l+1

5.96E-08 3.81E-06

Hence the gradients precisions are set as follows and as illustrated in Figure 2:

Layer Index l 1 2 3 4 5 6 7 8 9 10 11
B
G

(W )
l

11 12 12 11 11 11 11 11 11 11 11
B
G

(A)
l+1

7 10 10 11 11 11 11 10 11 11 10

Layer Index l 12 13 14 15 16 17 18 19 20 21 22
B
G

(W )
l

11 11 11 11 11 11 11 12 12 14 14
B
G

(A)
l+1

9 9 10 10 11 11 11 13 15

Internal Weight Accumulators Precisions: The smallest learning rate value for this network is
0.001 which results in the following precisions for the internal weight accumulators as illustrated in
Figure 2:

Layer Index l 1 2 3 4 5 6 7 8 9 10 11
B
W

(Acc)
l

9 13 13 13 13 12 13 12 12 12 12

Layer Index l 12 13 14 15 16 17 18 19 20 21 22
B
W

(Acc)
l

11 12 13 13 13 15 15 18 16 12 13
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E.4 CIFAR-100 RESNET

Feedforward Precisions: The quantization noise gains are used to obtain values for the precisions
as a function of B(min) as summarized below:

Layer Index l 1 2 3 4 5 6
EWl→pm 2.32E+03 8.23E+02 1.18E+03 1.28E+03 1.70E+03 2.78E+03
BWl

10+B(min) 9+B(min) 10+B(min) 10+B(min) 10+B(min) 10+B(min)

EAl→pm 1.42E+00 7.84E-01 2.52E-01 1.46E-01 7.68E-02 7.40E-02
BAl

5+B(min) 4+B(min) 4+B(min) 3+B(min) 3+B(min) 3+B(min)

Layer Index l 7 8 9 10 11 12
EWl→pm 3.03E+03 5.80E+03 7.29E+03 9.20E+03 9.81E+03 1.41E+04
BWl

10+B(min) 11+B(min) 11+B(min) 11+B(min) 11+B(min) 11+B(min)

EAl→pm 7.52E-02 8.70E-02 1.38E-01 2.49E-01 2.11E-01 1.51E-01
BAl

3+B(min) 3+B(min) 3+B(min) 4+B(min) 3+B(min) 3+B(min)

Layer Index l 13 14 15 16 17 18
EWl→pm 7.67E+03 1.40E+04 1.13E+04 1.09E+04 5.35E+03 3.97E+03
BWl

11+B(min) 11+B(min) 11+B(min) 11+B(min) 11+B(min) 11+B(min)

EAl→pm 1.54E-01 1.09E-01 1.93E-01 2.36E-01 1.27E-01 3.01E-02
BAl

3+B(min) 3+B(min) 3+B(min) 4+B(min) 3+B(min) 2+B(min)

Layer Index l 19 20 21 22
EWl→pm 8.35E+02 2.30E+01 6.78E+03 6.03E+03
BWl

9+B(min) 7+B(min) 11+B(min) 11+B(min)

EAl→pm 2.01E-02 1.80E-03
BAl

2+B(min) 0+B(min)

The value of B(min) is again swept, and it is found that the pm < 1% for B(min) = 3. The
feedforward precisions are therefore set as follows and as illustrated in Figure 2:

Layer Index l 1 2 3 4 5 6 7 8 9 10 11
BWl

13 12 13 13 13 13 13 14 14 14 14
BAl

8 7 7 6 6 6 6 6 6 7 6
Layer Index l 12 13 14 15 16 17 18 19 20 21 22

BWl
14 14 14 14 14 14 14 12 10 14 14

BAl
6 6 6 6 7 6 5 5 3

Gradient Precisions: The spatial variance of the gradient tensors is used to determine the PDRs
and the quantization step sizes of weight gradients. The singular values of the square-Jacobians
are needed to determine the quantization step sizes of activation gradients. They were computed as
follows:
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Layer Index l 1 2 3 4 5 6
r
G

(W )
l

5.00E-01 6.25E-02 6.25E-02 3.13E-02 6.25E-02 3.13E-02
∆
G

(W )
l

6.10E-05 1.53E-05 1.53E-05 1.53E-05 1.53E-05 1.53E-05
r
G

(A)
l+1

2.44E-04 1.22E-04 6.10E-05 6.10E-05 6.10E-05 6.10E-05

λ
(max)

G
(A)
l+1→G

(W )
l

6.46E+02 1.86E+03 1.86E+03 3.54E+03 3.54E+03 5.11E+03

∆
G

(A)
l+1

9.54E-07 1.19E-07 1.19E-07 1.19E-07 1.19E-07 5.96E-08

Layer Index l 7 8 9 10 11 12
r
G

(W )
l

3.13E-02 3.13E-02 3.13E-02 3.13E-02 3.13E-02 3.13E-02
∆
G

(W )
l

1.53E-05 1.53E-05 1.53E-05 1.53E-05 1.53E-05 1.53E-05
r
G

(A)
l+1

6.10E-05 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04

λ
(max)

G
(A)
l+1→G

(W )
l

5.11E+03 1.05E+03 1.05E+03 8.23E+02 8.23E+02 6.37E+02

∆
G

(A)
l+1

5.96E-08 1.19E-07 1.19E-07 2.38E-07 2.38E-07 2.38E-07

Layer Index l 13 14 15 16 17 18
r
G

(W )
l

3.13E-02 3.13E-02 1.56E-02 3.13E-02 1.56E-02 1.56E-02
∆
G

(W )
l

1.53E-05 7.63E-06 7.63E-06 7.63E-06 7.63E-06 7.63E-06
r
G

(A)
l+1

1.22E-04 1.22E-04 2.44E-04 1.22E-04 6.10E-05 6.10E-05

λ
(max)

G
(A)
l+1→G

(W )
l

6.37E+02 2.31E+02 2.31E+02 2.79E+02 2.79E+02 2.80E+02

∆
G

(A)
l+1

2.38E-07 2.38E-07 2.38E-07 1.19E-07 1.19E-07 1.19E-07

Layer Index l 19 20 21 22
r
G

(W )
l

1.56E-02 6.25E-02 3.13E-02 1.56E-02
∆
G

(W )
l

3.81E-06 7.63E-06 1.53E-05 7.63E-06
r
G

(A)
l+1

6.10E-05 7.81E-03

λ
(max)

G
(A)
l+1→G

(W )
l

2.80E+02 7.81E+01

∆
G

(A)
l+1

5.96E-08 2.38E-07

Hence the gradients precisions are set as follows and as illustrated in Figure 2:

Layer Index l 1 2 3 4 5 6 7 8 9 10 11
B
G

(W )
l

14 13 13 12 13 12 12 12 12 12 12
B
G

(A)
l+1

9 11 10 10 10 11 11 11 11 10 10

Layer Index l 12 13 14 15 16 17 18 19 20 21 22
B
G

(W )
l

12 12 13 12 13 12 12 13 14 12 12
B
G

(A)
l+1

10 10 10 11 11 10 10 11 16

Internal Weight Accumulators Precisions: The smallest learning rate value for this network is
0.001 which results in the following precisions for the internal weight accumulators as illustrated in
Figure 2:

Layer Index l 1 2 3 4 5 6 7 8 9 10 11
B
W

(Acc)
l

12 15 14 14 14 14 14 13 13 13 13

Layer Index l 12 13 14 15 16 17 18 19 20 21 22
B
W

(Acc)
l

13 13 14 14 14 14 14 17 18 13 14
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