

analyze)

Accumulation Bit-Width Scaling for Ultra-Low Precision Training of Deep Neural Networks Charbel Sakr¹, Naigang Wang², Chia-Yu Chen², Jungwook Choi², Ankur Agrawal², Naresh Shanbhag¹, Kailash Gopalakrishnan² ¹University of Illinois at Urbana-Champaign, ²IBM T.J. Watson Research Center

$$-2Q\left(\frac{2^{m_{acc}}}{\sqrt{i-1}}\right)$$
),

Convergence with Low-Precision Accumulation

• VRR-based analysis enables convergence accumulation and is tight

Hardware Benefits

• low-precision accumulation reduces hardware cost over by $\sim 2 \times$ compared to representation quantization

Acknowledgement

This work is supported in part by IBM Research; IBM Soft Layer; IBM Cognitive Computing Cluster (CCC); IBM-ILLINOIS Center for Cognitive Computing Systems Research (C3SR) - a research collaboration as part of the IBM AI Horizons Network; and C-BRIC, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA.

Research

