Per-Tensor Fixed-Point Quantization of the Back-Propagation Algorithm

Charbel Sakr & Naresh Shanbhag University of Illinois at Urbana-Champaign {sakr2,shanbhag}@Illinois.edu

Motivation

Machine Learning in Reduced Precision

Are these the minimum precisions required? Can minimum precision requirements be determined analytically? **Specifically for training**

Current Approaches

Largely based on heuristics

on accuracy

Fixed-point inference with theoretical guarantees

What about training?

Problem Setup and Challenges

training

- > multiple forward quantization noise sources
- unknown gradient dynamic range
- instability due to quantization noise bias in updates
- back-propagation of quantization noise in activation gradients
- risk of premature stoppage of convergence

Criteria-based Approach

Criterion 1: equalization of quantization noise gains

Criterion 2: proper gradient clipping

Criterion 3: quantization bias elimination

Criterion 4: backpropagated noise bound

Criterion 5: accumulator stopping condition

Convergence with Close-to-Minimal Precision

- FX training was believed to be impossible due to dynamic range issues [Koester et al. – NIPS'2017]
- proposed FX training is able to match FL training accuracy
- precision assignment found to be nearly minimal

Per-Layer Precision Trends

- weight precision decreases from network input to output
- > precisions of activation gradients and weight accumulators increase
- > ResNets have uniform precision requirements per tensor type

Hyper-Precision Reduction is Inefficient

	\mathcal{C}_W	\mathcal{C}_A	\mathcal{C}_M	\mathcal{C}_C	Test	\mathcal{C}_W	\mathcal{C}_A	\mathcal{C}_{M}	\mathcal{C}_C	Test
	$(10^6 b)$	$(10^6 b)$	(10^9FA)	$(10^6 b)$	Error	$(10^6 b)$	$(10^6 b)$	(10^9FA)	$(10^6 b)$	Error
	CIFAR-10 ConvNet					SVHN ConvNet				
FL	148	9.3	94.4	49	12.02%	148	9.3	94.4	49	2.43%
$\mathbf{FX}(C_o)$	56.5	1.7	11.9	14	12.58%	54.3	1.9	10.5	14	2.58%
BN	100	4.7	2.8	49	18.50%	100	4.7	2.8	49	3.60%
SQ	78.8	1.7	11.9	14	11.32%	76.3	1.9	10.5	14	2.73%
TG	102	9.3	94.4	3.1	12.49%	102	9.3	94.4	3.1	3.65%
	CIFAR-10 ResNet					CIFAR-100 ResNet				
FL	1784	96	4319	596	7.42%	1789	97	4319	597	28.06%
$\mathbf{FX}(C_o)$	726	25	785	216	7.51%	750	25	776	216	27.43%
BN	1208	50	128	596	7.24%	1211	50	128	597	29.35%
SQ	1062	25	785	216	7.42%	1081	25	776	216	28.03%
TG	1227	96	4319	37.3	7.94%	1230	97	4319	37.3	30.62%

- > feedforward binarization (BN) and gradient ternarization (TG) fail to match FL accuracy for same topology
- > stochastic quantization (SQ) provides marginal returns
- >BN, TG, SQ do not address the fundamental problem of realizing true FX training

Acknowledgement

This work was supported in part by C-BRIC, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) sponsored by DARPA.