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Problem Setup and Challenges

[ISCA’17]

8b fixed-point
(inference)

16b floating-point
(training)

Google’s TPU

[ISSCC’16]

16b fixed-point
(inference)

MIT’s Eyeriss IBM’s AI Core

[VLSI’18]

16b floating-point
(training)

Intel’s NNP

[NIPS’17]

16b flexpoint
(training)

Are these the minimum precisions required? 
Can minimum precision requirements be determined analytically? 

Specifically for training

Reducing Complexity 
of Inference

Forward path
quantization:
• Fixed-point via SQNR

analysis [Lin et al., ICML’17]
• Extreme quantization, e.g.,

BinaryNet, via training
[Courbariaux et al., NIPS’15
– Rastegari et al., ECCV’16 –
Hubara et al., NIPS’16]

Structural methods:
• Pruning [Han et al., NIPS’15]
• Parameter clustering [Wu et

al., ICML’18]

Reducing Complexity of 
Training

Quantized back-propagation:
• Fixed-point via stochastic rounding

[Gupta et al., ICML’15]
• Fixed-point/floating-point hybrid

[Koester et al., NIPS’17]
• Finite precision floating-point

[Wang et al., NIPS’18]

Gradient Compression:
• Extreme gradient quantization,

e.g., TernGrad [Wen et al., NIPS’17]
• Gradient sparsification [Lin et al.,

ICLR’18]

No theoretical guarantees 
on accuracy 

Hybrid fixed/floating-point 
training

Largely based on heuristics
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What about training?

➢multiple forward quantization noise sources

➢unknown gradient dynamic range

➢instability due to quantization noise bias in updates

➢back-propagation of quantization noise in activation gradients

➢risk of premature stoppage of convergence

Criteria-based Approach
Criterion 1: equalization of quantization noise gains

Criterion 2: proper gradient clipping

Criterion 3: quantization 
bias elimination

Criterion 4: back-
propagated noise bound

Criterion 5: accumulator stopping condition

Per-Layer Precision Trends

➢weight precision decreases from network input to output

➢precisions of activation gradients and weight accumulators increase

➢ResNets have uniform precision requirements per tensor type

Convergence with Close-to-
Minimal Precision

➢FX training was believed to be impossible due to dynamic range 
issues [Koester et al. – NIPS’2017]

➢proposed FX training is able to match FL training accuracy

➢precision assignment found to be nearly minimal

Hyper-Precision Reduction is 
Inefficient

➢feedforward binarization (BN) and gradient ternarization (TG) fail 
to match FL accuracy for same topology

➢stochastic quantization (SQ) provides marginal returns

➢BN, TG, SQ do not address the fundamental problem of realizing 
true FX training


